Tutorial on mapping results into shape space

From BanghamLab
Revision as of 12:06, 14 January 2013 by PaulSoutham (talk | contribs)
Jump to navigation Jump to search

Return to GFtbox Tutorial pages

Shape space for a growing leaf is computed from a set of labelled leaf outlines - see AAMToolbox. Each outline is captured by a set of landmarks placed around the leaf. To project the output from the GFtbox into a shape space requires landmarks to be placed around the model leaf at corresponding position. In the case of leaves there is a GFtbox function


which is tailored to the Arabidopsis leaf. It could be adapted to suit other shapes.

>> help leaf_profile_monitor
function  m=leaf_profile_monitor(m,realtime,RegionLabels,Morphogens,start_figno)
monitor morphogen levels at a set of vertices

m, mesh
RegionLabels, vertices to be monitored as designated by cell array of strings, i.e. region labels
Morphogens, cell array of strings, i.e. uppercase morphogen names to
   be monitored. There should be one RegionLabels string for each
   Morphogens string
Vertlabels, if true then display vertex numbers in each regionlabel on
         the mesh default false
start_figno, default figure 1 (Must open a fig even if just monitoring to file)

 monitor properties of vertices
     m=leaf_profile_monitor(m,... % essential
         'REGIONLABELS',{'V_PROFILE1','V_PROFILE2'},... % essential
         'MORPHOGENS',{'S_LEFTRIGHT','S_CENTRE'},... % optional  (one element per REGIONLABEL)
         'VERTLABELS',false,'FigNum',1,'EXCEL',true,'MODELNAME',modelname); % optional (file in snapshots directory')

This function is called from the Gftbox interaction function and writes a .mat file to xxxxLocation after each model step has been computed.


Based on the GFtbox project GPT_ArLeaf_110323A that computes leaf growth corresponding to experimental observations analysed in PRJ_???