One dimensional sieve introduction: Difference between revisions

From BanghamLab
Jump to navigation Jump to search
Line 31: Line 31:
|[[Image:IllustrateSIV_1_03.png|400px|'o' non-linear filter (sieve)]]
|[[Image:IllustrateSIV_1_03.png|400px|'o' non-linear filter (sieve)]]
|}
|}
scaleA=1;
Y1=SIVND_m(X,scaleA,'o');
{| border="0" cellpadding="5" cellspacing="5"
{| border="0" cellpadding="5" cellspacing="5"
|- valign="top"
|- valign="top"
Line 36: Line 38:
|[[Image:IllustrateSIV_1_04.png|400px|'o' non-linear filter (sieve)]]
|[[Image:IllustrateSIV_1_04.png|400px|'o' non-linear filter (sieve)]]
|}
|}
scaleB=2;
Y2=SIVND_m(X,scaleB,'o');

Revision as of 10:08, 15 November 2013

Return to MSERs and extrema

1D Signals

Matlab function IllustrateSIV_1 illustrates how MSERs (maximally stable extremal regions) and sieves are related. We start with one dimensional signals before moving to two dimensional images and three dimensional volumes.

AAMToolbox Consider a signal, <math>X</math>

X=getData('PULSES3WIDE')

>blue X=0 5 5 0 0 1 1 4 3 3 2 2 1 2 2 2 1 0 0 0 1 1 0 3 2 0 0 0 6 0 0

<math>X</math> has three one-sample-wide maxima (<math>M^1_8</math> , <math>M^1_{24}</math> , <math>M^1_{29}</math> ), two two-sample-wide maxima (<math>M^2_{14}</math> , <math>M^2_{21}</math>) some of which, when removed, will persist as larger scale maxima, e.g. <math>M^1_{24}</math> will become two samples wide as the peak is clipped off. IllustrateSIV 1 02.png

Filter

Linear

A linear Gaussian filter with <math>\sigma=2</math> attenuates extrema without introducing new ones. But blurring may be a problem. Gaussian filtered
h=fspecial('Gaussian',9,2);
Y=conv(X,(h(5,:)/sum(h(5,:))),'same');

Non-linear

A low-pass 'o' sieve scale 1 (non-linear filter underpinning the MSER algorithm) can remove scale 1 maxima. The result is shown in red, extrema at <math>M^1_8</math> , <math>M^1_{24}</math> , <math>M^1_{29}</math> have been removed. There is no blur. The remaining signal is unchanged. 'o' non-linear filter (sieve)
scaleA=1;
Y1=SIVND_m(X,scaleA,'o');
Scale 2 maxima are removed next using the 'o' sieve scale 2. The result is shown in green. Extrema at <math>M^2_{14}</math> , <math>M^2_{21}</math> have been removed. Still no blur and what remains is unchanged. 'o' non-linear filter (sieve)
scaleB=2;
Y2=SIVND_m(X,scaleB,'o');