One dimensional sieve introduction: Difference between revisions

From BanghamLab
Jump to navigation Jump to search
Line 94: Line 94:


=<span style="color:Chocolate">We have candidate 1D MSER's</span>=
=<span style="color:Chocolate">We have candidate 1D MSER's</span>=
'''Which is the ''most stable''?'''<br><br>
<span style="color:SaddleBrown">'''Which is the ''most stable''?'''<br><br>
This is a pragmatic judgement. Parameters might include
This is a pragmatic judgement. Parameters might include</span>
#how stable over scale (length)
#<span style="color:SaddleBrown">how stable over scale (length)</span>
#amplitude (value or level)
#<span style="color:SaddleBrown">amplitude (value or level)</span>
#a vector of amplitude over scale
#<span style="color:SaddleBrown">a vector of amplitude over scale</span>
#proximity to others
#<span style="color:SaddleBrown">proximity to others</span>
 
=<span style="color:Chocolate">So far '''''maxima'''''. What about ''minima'' and more?</span>=
=<span style="color:Chocolate">So far '''''maxima'''''. What about ''minima'' and more?</span>=
'''Which is the ''most stable''?'''<br><br>
'''Which is the ''most stable''?'''<br><br>

Revision as of 10:41, 17 November 2013

Return to MSERs and extrema

1D Signals to MSERs and granules

Matlab function IllustrateSIV_1 illustrates how MSERs (maximally stable extremal regions) and sieves are related. We start with one dimensional signals before moving to two dimensional images and three dimensional volumes.

AAMToolbox Consider a signal, <math>X</math>
X=getData('PULSES3WIDE')
>blue  X=0 5 5 0 0 1 1 4 3 3 2 2 1 2 2 2 1 0 0 0 1 1 0 3 2 0 0 0 6 0 0
<math>X</math> has three one-sample-wide maxima (<math>M^1_8</math> , <math>M^1_{24}</math> , <math>M^1_{29}</math> ), two two-sample-wide maxima (<math>M^2_{14}</math> , <math>M^2_{21}</math>) some of which, when removed, will persist as larger scale maxima, e.g. <math>M^1_{24}</math> will become two samples wide as the peak is clipped off. IllustrateSIV 1 02.png

Filter

Linear

A linear Gaussian filter with <math>\sigma=2</math> attenuates extrema without introducing new ones. But blurring may be a problem. Gaussian filtered
h=fspecial('Gaussian',9,2);
Y=conv(X,(h(5,:)/sum(h(5,:))),'same');

Non-linear: the starting point for MSER's

A low-pass 'o' sieve scale 1 (non-linear filter underpinning the MSER algorithm) can remove scale 1 maxima. The result is shown in red, extrema at <math>M^1_8</math> , <math>M^1_{24}</math> , <math>M^1_{29}</math> have been removed. There is no blur. The remaining signal is unchanged. 'o' non-linear filter (sieve)
scaleA=1;
Y1=SIVND_m(X,scaleA,'o');
Scale 2 maxima are removed next using the 'o' sieve scale 2. The result is shown in green. Extrema at <math>M^2_{14}</math> , <math>M^2_{21}</math> have been removed. Still no blur and what remains is unchanged. 'o' non-linear filter (sieve)
scaleB=2;
Y2=SIVND_m(X,scaleB,'o');
A high-pass 'o' sieve scale 1 shows the extrema that have been removed. In red the scale 1 extrema at <math>M^1_8</math> , <math>M^1_{24}</math> , <math>M^1_{29}</math> have been removed. In green extrema of scale 2 are shown. In the sieve terminology these are granules. Think of grading gravel using sieves, large holes let through large grains and small holes let through small grains. Here scale is measured as length. If granules don't fit they don't get through - unlike linear filters which leak. 'o' non-linear filter (sieve)
red=double(X)-double(Y1); 
green=double(Y1)-double(Y2);

Repeat over scales 0 to 15

Increasing the scale (towards the front) removes extrema of increasing length. The algorithm cannot create new maxima (it is an 'o' sieve) it is, therefore, scale-space preserving. 'o' non-linear filter (sieve)
YY=ones([length(X),1+maxscale]);
for scale=0:maxscale
    Y2=SIVND_m(Y1,scale,'o',1,'l',4);
    YY(:,scale+1)=Y2';
    Y1=Y2; % each stage of the filter (sieve) is idempotent
end

Label the granules

We can create a data structure that captures the properties of each granule. The number in each disc indicates the granule scale. Each cell in the PictureElement field has a list of indexes recording the granule position (<math>X</math>). (In 1D this is best done run-length coded but this code is designed to also work in 2D.) 'o' non-linear filter (sieve)
g=SIVND_m(X,maxscale,'o',1,'g',4);
g =   Number: 10
             area: [1 1 1 2 2 2 3 3 5 12]
            value: [6 1 1 2 5 1 1 1 1 1]
            level: [6 4 3 2 5 1 3 2 2 1]
        deltaArea: [5 2 1 7 3 12 2 2 7 19]
        last_area: [6 3 2 9 5 14 5 5 12 31]
             root: [29 8 24 24 2 21 8 14 8 8]
   PictureElement: {1x10 cell}

g.PictureElement

 Columns 1 through 9
   [29]    [8]    [24]    [2x1 double]    [2x1 double]    [2x1 double]    [3x1 double]    [3x1 double]    [5x1 double]  [12x1 double]

Tracing the granules through scale-space identifies candidate MSER's

The granules contain all the information in the signal. The tree illustrates the relationship between granules. The granules at <math>X=8</math> (scales 1, 3, 5, 12) indicates a region that is stable over scale. Likewise at <math>X=24</math> (scales 1, 2). One might argue that the latter is the less stable.

'o' non-linear filter (sieve)

'o' non-linear filter (sieve)

We have candidate 1D MSER's

Which is the most stable?

This is a pragmatic judgement. Parameters might include

  1. how stable over scale (length)
  2. amplitude (value or level)
  3. a vector of amplitude over scale
  4. proximity to others

So far maxima. What about minima and more?

Which is the most stable?

This is a pragmatic judgement. Parameters might include

  1. how stable over scale (length)
  2. amplitude (value or level)
  3. a vector of amplitude over scale
  4. proximity to others