One dimensional sieve introduction: Difference between revisions
		
		
		
		Jump to navigation
		Jump to search
		
| No edit summary | No edit summary | ||
| Line 11: | Line 11: | ||
| {| border="0" cellpadding="5" cellspacing="5" | {| border="0" cellpadding="5" cellspacing="5" | ||
| |- valign="top" | |- valign="top" | ||
| [[Image:IllustrateSIV_1_02.png| | |width="50%"| <math>X</math> has three one-sample-wide maxima (<math>M^1_8</math> , <math>M^1_{24}</math> , <math>M^1_{29}</math> ), two two-sample-wide maxima (<math>M^2_{14}</math> , <math>M^2_{21}</math>) some of which, when removed, will persist as larger scale maxima, e.g. <math>M^1_{24}</math> will become two samples wide as the peak is clipped off. | ||
| |[[Image:IllustrateSIV_1_02.png|400px]] | |||
| |} | |} | ||
| =<span style="color:Chocolate">Filter</span>= | =<span style="color:Chocolate">Filter</span>= | ||
| ====Linear==== | |||
| {| border="0" cellpadding="5" cellspacing="5" | |||
| |- valign="top" | |||
| |width="50%"| A linear Gaussian filter with <math>\sigma=2</math> attenuates extrema without introducing new ones. But blurring may be a problem. | |||
| |[[Image:GaussianSmoothedSigma2.png|350px|Gaussian filtered]] | |||
| |} | |||
| ====Non-linear==== | |||
| {| border="0" cellpadding="5" cellspacing="5" | |||
| |- valign="top" | |||
| |width="50%"| A low-pass 'o' sieve scale 1 (non-linear filter underpinning the MSER algorithm) can remove scale 1 maxima.  The result is shown in red, extrema at <math>M^1_8</math> , <math>M^1_{24}</math> , <math>M^1_{29}</math> have been removed.  There is no blur. The remaining signal is unchanged. | |||
| |[[Image:IllustrateSIV_1_03.png|400px|'o' non-linear filter (sieve)]] | |||
| |} | |||
| {| border="0" cellpadding="5" cellspacing="5" | |||
| |- valign="top" | |||
| |width="50%"| Scale 2 maxima are removed next using the 'o' sieve scale 2. The result is shown in green. Extrema at <math>M^2_{14}</math> , <math>M^2_{21}</math> have been removed.  Still no blur and what remains is unchanged.  | |||
| |[[Image:IllustrateSIV_1_04.png|400px|'o' non-linear filter (sieve)]] | |||
| |} | |||
Revision as of 21:16, 14 November 2013
1D Signals
Matlab function IllustrateSIV_1 illustrates how MSERs (maximally stable extremal regions) and sieves are related. We start with one dimensional signals before moving to two dimensional images and three dimensional volumes.
|   | Consider a signal, <math>X</math> X=getData('PULSES3WIDE') | 
Filter
Linear
| A linear Gaussian filter with <math>\sigma=2</math> attenuates extrema without introducing new ones. But blurring may be a problem. |   | 


