GFtbox Tutorial pages: Difference between revisions

From BanghamLab
Jump to navigation Jump to search
No edit summary
No edit summary
Line 15: Line 15:
{| border="0" cellpadding="5" cellspacing="3"
{| border="0" cellpadding="5" cellspacing="3"
|- valign="top"
|- valign="top"
|width="700pt"|[[In the beginning|For tutorial on radially increasing growth click here]]<br>Consider a disc shaped canvas (tissue) in which the''' non-uniform specified growth''' increases in proportion to the distance from the centre.<br>'''Into what shape will the disc grow?'''<br>Already we are into the realms of modelling biological systems. Compare this result with the discussion of Lily petals and Gaussian curvature ([http://www.pnas.org/content/early/2011/03/14/1007808108.abstract Lianga and Mahadevana],[http://www.americanscientist.org/issues/feature/leaves-flowers-and-garbage-bags-making-waves Sharon, Marder and Swinney],[http://rico-coen.jic.ac.uk/uploads/0/0f/Nath_Science.pdf Nath, Crawford, Carpenter and Coen] ).
|width="700pt"|[[In the beginning Uniform|For tutorial on uniform growth click here]]<br>Consider a disc shaped canvas (tissue) in which the''' non-uniform specified growth''' increases in proportion to the distance from the centre.<br>'''Into what shape will the disc grow?'''<br>Already we are into the realms of modelling biological systems. Compare this result with the discussion of Lily petals and Gaussian curvature ([http://www.pnas.org/content/early/2011/03/14/1007808108.abstract Lianga and Mahadevana],[http://www.americanscientist.org/issues/feature/leaves-flowers-and-garbage-bags-making-waves Sharon, Marder and Swinney],[http://rico-coen.jic.ac.uk/uploads/0/0f/Nath_Science.pdf Nath, Crawford, Carpenter and Coen] ).
|width="200pt"|<wikiflv width="192" height="168" loop="true" background="white">Fascinator.flv|GPT in the beginning-2011-05-05-000002d76-0001.png</wikiflv>
|width="200pt"|<wikiflv width="192" height="168" loop="true" background="white">Fascinator.flv|GPT in the beginning-2011-05-05-000002d76-0001.png</wikiflv>
<small>Note: this model should have many more finite elements</small>
<small>Note: this model should have many more finite elements</small>
Line 23: Line 23:
{| border="0" cellpadding="5" cellspacing="3"
{| border="0" cellpadding="5" cellspacing="3"
|- valign="top"
|- valign="top"
|width="700pt"|
|width="700pt"|[[In the beginning Growing a cone|For tutorial on uniform growth non-uniform polariser click here]]<br>
|width="200pt"|<wikiflv width="192" height="168" loop="true" background="white">InTheBeginning.flv|GPT in the beginning-2011-05-05-000002-0001.png</wikiflv>
|width="200pt"|<wikiflv width="192" height="168" loop="true" background="white">InTheBeginning.flv|GPT in the beginning-2011-05-05-000002-0001.png</wikiflv>
|}
|}
='''C''' Getting serious: doing it with an interaction function=
='''C''' Getting serious: doing it with an interaction function=
Interaction functions - programmatic modelling
Interaction functions - programmatic modelling

Revision as of 17:23, 10 May 2011

GFtbox Details

Three ways to use GFtbox

There are three ways to use the GFtbox.

  1. Doing everything from the GUI. This is the best way to start. See (1,2) below.
  2. Do only some things from the GUI. This is the best way to develop ideas. Use the GUI to generate the mesh (canvas) and create growth factors (morphogens - in other words declare the variables) but capturing your ideas on how the regulatory processes work in, what we call, the interaction function. See (3) below.
  3. Without the GUI. For example, run many examples (instances) of a pre-existing project on a cluster. This is the best way to explore the parameter space of a model for comparison with biological observations. We have used this way extensively but the code is not yet ready for general use.

A In the beginning: doing it from the GUI

For tutorial on uniform growth click here
Consider a disc shaped canvas (tissue) in which the specified growth is uniform, isotropic and on both sides.
Into what shape will the disc grow?
This model is as simple as it gets. Notice that, during growth, the mesh is automatically subdivided. Notice also that the final surface is not quite flat. This is because it is not flat initially. This is to allow it to deform in 3D. It can be made flat and forced to remain flat - see options on the GUI (hover over controls to get prompts).
<wikiflv width="192" height="168" loop="true" background="white">UniformGrowth.flv|GPT_in_the_beginning_2_20110510-000000-0001.png</wikiflv>
For tutorial on uniform growth click here
Consider a disc shaped canvas (tissue) in which the non-uniform specified growth increases in proportion to the distance from the centre.
Into what shape will the disc grow?
Already we are into the realms of modelling biological systems. Compare this result with the discussion of Lily petals and Gaussian curvature (Lianga and Mahadevana,Sharon, Marder and Swinney,Nath, Crawford, Carpenter and Coen ).
<wikiflv width="192" height="168" loop="true" background="white">Fascinator.flv|GPT in the beginning-2011-05-05-000002d76-0001.png</wikiflv>

Note: this model should have many more finite elements

B Adding polariser

For tutorial on uniform growth non-uniform polariser click here
<wikiflv width="192" height="168" loop="true" background="white">InTheBeginning.flv|GPT in the beginning-2011-05-05-000002-0001.png</wikiflv>

C Getting serious: doing it with an interaction function

Interaction functions - programmatic modelling