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2 Outline of this document

Introduction

The aim of this document is to provide a technical insight into
how the Image Comprehension Environment, ICE, works. (Never
mind the name the acronym is short and . . . )

The underpinning computer vision algorithms and struc-
tures are key for the next generation of image editors and, for
image retrieval in two important ways. Their value has been estab-
lished in other applications and reported in journals ranging from
‘IEEE PAMI’ (see Chapter 5) to ‘Science’ (see Chapter 8).

Innovative algorithms: image
understanding and retrieval.

A fundamental flaw in existing image editing is: what you see
is what you get. But later, can you or your collaborator see how?

First and foremost the software described here is designed to
address this problem and to make interacting with images easy.

Innovative architecture: for
slipping seamlessly from editing
to creative art this software is
peerless. It embodies ideas ‘worked up’ for extreme editing : producing

art from photographs. By not competing head on with big nameInnovative structures: Track-
changes, ImageDocuments, Im-
ageWizards, blend pipeline and
more.

image editors it has been possible to test the ideas on the market.

Research: language of editing
images.

It opens the way to the development of a language of image
editing that will raise standards, improve product stability and in-
crease the number of users.
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Introduction

.
The following table provide guidance on page numbers.

Know how Algorithms GUI Interface
⇒ Sieves Shape (PlainSight)
Application ⇓ 1D 2D Trees Model Blend Pipe imDoc Lang.

Image editors
Image editor that
slips into art.

7-3 7-3 5-9 8-2 4-16 4-11 3-14 4-3

Re-editing the Im-
ageDocument.

4-16 4-11 3-14 4-3

Object editing edit
lists.

5-2 5-2 4-16 4-16 4-11 3-14 4-3

Computer Vision and finding things
Metadata for index-
ing images.

4-16 4-11 3-14

Recognition of fea-
ture points.

7-3 7-3 5-9 4-16

Retrieval for finding
images by content.

7-3 7-3 5-9 4-16

Figure 2.1: Quick guide showing Section-Page numbers relating know-how to applications. New
developments are outlined in Figure 4.23
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3 ICE and ImageDocuments

Figure 3.1: What you see is
what you get. But later, can
you or your collaboration see
how?

Why ImageDocuments?

Editing improves images. But once improved, can you remem-
ber how and explain it to someone else?

Fundamental flaw This is a fundamental flaw in existing image
editing systems. A user has access to the information embodied

Figure 3.2: Created, how?

in the final image, but the information representing the process by
which that image was achieved is either lost or unclear.

The evidence from word processing and vector graphics,
Page 3-4, is that doing more is better and better is good com-
mercial sense. Somehow, the sequence of image edits should be
accessible and editable.

Could the problem of editing images become closer to that of
editing narratives? Unlike wordprocessing and technical drawing
there was, historically, no culture of widespread sharing of picture
editing that developed a language of image processing that would
have provided a natural framework for the design of image editing
software. Beyond the rubber eraser1, image editing was rudi-

Figure 3.3: The virtuous circle
is completed when people can
share the editing of images.

mentary and software designers had to go forward boldly on their
own.

Doing more, therefore, means creating a language for image
editing that encourages people to talk about what they have done,
share their ideas and generally enrich the creative process. People

Popularising the language of
image editing is create a fan-
tastic commercial opportunity.

need to make an edit, have a clear view of what they have done,
where they did it, preferably why, exploit useful computer vision
algorithms and, critically, easily revisit their work. They need to
let someone else go around the editing loop keeping the best and
re-editing the rest.

Not having this loop could be inhibiting people from working

11770, Edward Naime
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Why ImageDocuments?

easily with images. It could be inhibiting the deployment of com-
puter vision and language processing algorithms that would oth-
erwise enable steady improvements in quality, thereby capturing
increasing numbers of users and consolidating loyalty.

Against a background of huge numbers of digital camera own-
ers who are starting to look for the next thing to do and computers
that are for the first time fast enough (cpu and gpu) to handle im-
ages properly. It is now timely to create a new generation of image
editor.

So, just how could a colleague
change the title on the box, Fig-
ure 3.2?

The Approach used in ICE as the Solution
The main aspects the ICE interface dynamics have been tested

by thousands of customers. ICE is used as an example because
without visibly revealing the underlying mechanisms, ICE based
systems are appreciated by independent reviewers and users who
notice the difference2 The GUI will be slicker and more attractive
when written in an operating system dependent language: Version
2.

ICE is a tidy source of inno-
vative ideas that has demon-
strated that they, the structures
and the interfaces are not only
feasible, they are practical and
effective.

There are four parts to a description of the solution. Firstly, the
problem is put into the context of word and vector graphic editing,
Page 3-4. Secondly, a solution illustrated with examples of editing
and navigating within ICE, Page 3-10. Thirdly, consequences of
using the concepts in ICE can be extended to produce a complete
system, Page 3-12. Finally, some very attractive new horizons can
be seen from the shoulders of ICE, Page 3-14.

What follows could sound a little wild without first reading, or
constantly referring to, the remaining chapters of this document.

2Tom Arah, Painting by Numbers, in PC PRO, April 2006, pp203:205,
Dennis Publishing Ltd, London, reported

• “. . . combined with layer-based and history based compositing, Photo-
shop reveals some considerable power However to make the most of
it you need to be an expert and, even then, it’s very much a process
of creative experimentation and trial and error.

• “. . . What we really want is built on these same principles, but designed
from the ground up . . .

“. . . I admit that I’ve been won over by ArtMaster Pro and the use of ArtWiz-
ards in particular. The sheer range of creative choices that Fo2PiX’s Source-
based approach unleashes, combined with the infinite range of ways in which
they can be applied, means that you really need some kind of ever-present
guide.

“Moreover, you don’t actually feel restricted by the ArtWizards in practice,
you can quickly, confidently and consistently give any photograph a partic-
ular type of artistic feel, while retaining creative input and ultimate creative
control.”
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3 ICE and ImageDocuments

Context: Taming Image Editing
Those who do not want to read how ImageDocuments are a

natural evolution from word processing, vector graphics and exist-
ing image editors, please skip directly to Page 3-6 after a quick
look at Page 3.1.

Setting the scene with word processing The advent of desk-
top publishing sparked a revolution in the way people worked and
played. Inspired by SmallTalk [48] and enabled by laser printers,
software designers produced windowed user interfaces, what-you-
see-is-what-you-get (WYSIWIG) displays and page oriented layout
languages [84]. Graphical software and page layout programs be-
came the standard for word processing and presentation. Pro-

Figure 3.4: Tracking changes
in word processing makes col-
laboration on documents easier.

gramming effort was required in two areas, producing good results
and producing a good human computer interface. Tools for organ-
ising complex documents into manageable hierarchies were devel-
oped. Chapters, headings, figure legends, etc. provide a familiar
way to break up documents, layouts and create working templates.
Prose also has a natural grammar and that can be exploited by
intelligent programs to assist with spelling and grammar. Further
improvements were achieved by adding time-stamps to the hierar-
chy of word, sentence, format, and other objects, so providing a
framework for tracking changes and the better sharing of the edit-
ing process. Attention shifts around and around between function
and useability. It is not a circle, it is an upward spiral, Figure 3.5
that captures increasing numbers of users and consolidates loyalty.

Figure 3.5: Slowly improving
software.

Improved working environments bring other advantages. For
example, by making it easy to share documents there has been
growth in the availability of worked examples that help people to
do things that they would, in the past, have never attempted: tem-
plates, boilerplate contracts, pattern essays, CV’s, research papers,
presentations and articles.

Computing environments for word processing are changing the
way people discuss and work with written documents for the better.

With input from vector graphics Computers impacted vector
drawing very early 3. Here, the importance of organising com-
plex work into manageable hierarchies is even more apparent. The

3circa 1960, Ivan Sutherland, ‘SKETCHPAD’, MIT Lincoln Laboratory.
Also, ‘The Electronic Drafting Machine’ by ITEK and ‘Design Automated by
Computer’ by Hanratty at General Motors.
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Why ImageDocuments?

grouping together of lines, curves and shapes into objects is not
only physically meaningful, literally the nuts and bolts of engineer-
ing, but exactly reflects what is now considered to be good progam-
ming practice. Hierarchical object trees provide a perceptually

Figure 3.6: SketchUp demon-
stration of vector graphics.

meaningful way to navigate the work. Objects such as windows,
cars and trees are accumulated into libraries to be readily selected,
used and adapted. The vocabularies and ways of talking about
engineering and architecture reflect the hierarchies and grammars
of the data structures. It is not surprising then to find program-
ming practices used in engineering and architectural systems being
adopted in vector illustration and presentation programs. Nor is it
surprising to find that they not only improve peoples output and
working practices but even improve the way they think about the
work.

Once again sharing, editing and re-editing are the norm and
undoubtably we will soon see the structure exploited in the equiv-
alent of ‘track changes’ and intelligent tools that check and offer
advice on the ‘grammar’ of the object hierarchies.

Image editors are harder In some ways the development of
digital bit image processing has been harder. Paint packages were
developed early 4 [75]. Pioneering and useful but you need to be
able to paint or at least sketch. Digital images were rare, they
had to be scanned. Photoshop was first bundled with a slide scan-
ner. The development of image editing programs then followed
the same virtuous circle as word processing, Figure 3.5. It is, how-
ever, less obvious how the program should be structured. Images
comprise many objects but they are captured as a single, flat, set
of pixels. Current systems allow users to adjust, superimpose,

Figure 3.7: Images are just pix-
els. What’s interesting? The
boats, just boat number 7, the
topsails, the helmsmen, that
they are tacking, racing or that
the colour balance is wrong:
too blue.

blend, mask, adjust tones, balance, crop, blend images and per-
form an ever increasing number of filter effects. The introduction
of ‘Layers’ and methods for selecting sets of pixels enables a struc-
ture to be created manually and ‘Actions’ to provide some level of
automation. The manner in which image editing systems permit
users to apply these changes have become very powerful but have
remained largely unchanged for several years.

4Richard Shoup, ‘Superpaint’, Xerox Palo Alto Research Center, 1975
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3 ICE and ImageDocuments

A short introduction to using ICE
For those who have not tried one of the applications derived

from ICE, what follows is a short introduction to image editing
using ArtMasterPro. To skip on go to Page 3-10.

Starting An image is opened in ‘Adjust’ and moved directly to
the ‘Studio’ shown in Figure 3.8. There are two ways to load
the image into the Canvas, using the manual controls or using an
ArtWizard (more generally called ImageWizard). Since the image
is a portrait, the ‘Portraits:Photo Adjust:Load image to Canvas’
ArtWizard has been used (highlighted blue).

Figure 3.8: Screenshot of the ArtMasterPro on entering the Studio with an image of Emma. The top
left panel shows the ArtWizard library. An ArtWizard has been run that loads the image into the working
Canvas. Note (if you can resolve it) that the ArtWizard is in the ‘Portraits:Photo Adjust’ section of the
library, see Figure 3.9. In the course of this example two further ones will be run, ‘Eye Sparkle’ and ‘Add
Highlights’.
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Why ImageDocuments?

Adding sparkle to the eyes The goal is to add sparkle to the
eyes and highlights to the hair (both exaggerated for clearity) so
the ‘Eye Sparkle’ ArtWizard is selected and run, Figure 3.10. This

Figure 3.9: ArtWizards library.

shows that the ArtWizard stops when the sparkle is to be brushed
over the eyes. Optionally, an information ‘Strap’ drops down from
the top right of the Canvas explaining what to do next and why.
The highlights are obtained from a Source. The Sources are special
‘layers’ derived from the original image, see Page 4-4. Highlights
are regionally light areas and the Tab containing Highlights has a
set of which the first 6 are of increasing area. Thus the sparkle
comes from small, real, highlights that were faintly present in the
original image (they are reflections of the studio lights).

Figure 3.10: When executing the ArtWizard ‘Eye Sparkle’ the script stops and invites the sparkle to be
brushed into place using the mouse. Here, one eye has been done and the (faint) cursor is next to the
other. Context sensitive help is available from a ‘strap’ that pulls out of the top right of the Canvas (not
shown).
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3 ICE and ImageDocuments

Once selected the thumbnail Sources are recomputed at full
size and previewed in the Palette where they are under the control
of two dimensional brightness/contrast and hue/saturation pickers
(2D sliders).

Adding hair highlights Figure 3.10 shows larger scale highlights
being brushed onto the hair. The bottom left preview panel clearly
shows all the highlights blended onto the Canvas. Only some are
brushed onto the Canvas itself. The ArtWizard selects the appro-
priate Source and presets all the blend, brush and Palette controls
appropriately. However, they they can all be changed. Changes
can be undone/redone and aborted.

Figure 3.11: Adding large scale highlights to the hair.

It is not essential to use ArtWizards although it is much the
easiest way to get going. Indeed, they can be treated as tutorials.

3-8



Why ImageDocuments?

Removing skin blemishes without an ArtWizard The alter-
native is to switch to Manual mode, in which case all controls and
700 Sources are accessible.

Figure 3.12: Manual mode. Running on a large screen it is convenient to have the Stencil fully revealed.
In manual mode the context sensitive is generic but in an ArtWizard it is specific to each step in each
ArtWizard. The Stencil is an α-channel governing the blending of the Palette with the Canvas, see
Page 4-16. In this case lowlights of the size of facial moles has been selected and inverted to provide
a mask that selects the moles, see Page 5-5. The Palette contains a sieved copy of the image (spots
removed). As result, one can brush out the moles. The ArtWizard ‘Dark blemish remover’ does all this
providing help as it goes.

Simple? ‘Creata’ is an even simpler, cheap application, derived
from ICE that only uses ArtWizards. It is sold with five and new
ones are downloadable for a small charge.

Given this short introduction it is now appropriate to examine
how ICE addresses the more difficult problem of treating image
editing more like word processing.
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3 ICE and ImageDocuments

Figure 3.13: Four ImageWiz-
ards were used to produce the
top panel. Right clicking on the
bottom left panel pops out the
history and enables the third
ImageWizard to be selected for
re-editing. The thumbnail pro-
vides a visual reminder of the
Canvas at that moment. Bot-
tom panel shows the hair high-
lights being emphasised more
heavily. Clicking Finish causes
the final result to be recom-
puted with the new highlights.
Note, the dark skin blemishes
have re-appeared. They were
removed by the next ImageWiz-
ard whose steps will be re-
applied when the edit is fin-
ished.

A solution illustrated with ICE

Example of navigating and editing an ImageDocument
Typically, ICE is loaded with a set of extracts from the original
image, around 700 hierarchically catalogued Sources and with a
set of hierarchically catalogued ImageWizards (ArtWizards in Art-
Master Pro). The fact that both are well organised will prove to
be important later on.

Consider the image shown in Figure 3.1. The original photo-
graph has been improved by running and interacting with a number
of ImageWizards.
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Why ImageDocuments?

Figure 3.14: Top panel show
the re-edited image. The Im-
ageWizard for removing dark
blemishes has been re-applied
automatically. Note that it has
been recorded that ‘ab’ did the
re-edit. Lower panel, Manual
mode has been used by ‘ab’
to add lipstick, but what else?
With ICE it is possible to go
back and find out. ImageWiz-
ards are labelled, easy to use
and people can build and share
their own library.

Figure 3.9 illustrates the library of ImageWizards. The user in-
teracted with the image within a selection of of these ImageWizards
and, because the ImageDocument is a complete record of interac-
tions, any of the interactions can be re-edited, see Figure 3.13
and 3.14. The hair highlights on the right of the image were too
strong compared to the left. The highlighting is, therefore, being
changed by re-editing the appropriate step. ICE allows any in-
teraction, including edits themselves, to be re-edited, augmented
or deleted. This is a significant advance. It means that, like a
word document, it can be created, changed, saved, re-opened and
changed again.
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3 ICE and ImageDocuments

Consequences of ICE: New ways of Navigating Image
Editors

Although pixels are viewed in parallel they are worked on se-
quentially. Books and magazines are full of advice on how to edit

The Blend pipeline leads to a
sequence of steps that have the
grammar of a natural language. images, illustrate, draw and paint. They explain useful sequences

of operations and the underlying principles. They demonstrate a
rhythm and grammar associated with working with images. When
explaining how they work, experts will often start by saying ‘Well,
I usually start by doing this and then I do that ’, in other words
there is a pattern in what they do. Can this pattern be turned to
advantage?

Figure 3.15: Novel ways to navigate an ImageDocument. The Edit-Sequence Narrative, bottom panel,
includes phrases like “The large sized image . . .”, “. . . Now light tint . . .”, “. . . with detail removed using
two or three brushstrokes, i.e. unsharp mask . . .”, etc. Clicking on a phrase in the Narrative or a line
in the XML ImageDocument summary selects an image editing step. A third alternative is to right-click
over a brush mark and select the appropriate step. (Experiment implemented in Matlab).

Yes, as soon as the sequences were captured it became clear
that they resemble other natural languages. It is a rewarding exer-
cise for even just seeing the sequences makes it easier to understand
how to work with images. It is this observation that lead to the

3-12



Why ImageDocuments?

Blend pipeline Page 4-16 and sequence of ‘steps’ Page 4-14. Note, that it is a characteristic
of ICE that the brushes might
have been quite wide (because
brushing does not ‘paint’ on
the image it modulates an α-
channel, Page 4-16).

Feasibility The sequences are explored experimentally with the
help of a Matlab demonstration program, Figure 3.15. The cen-
tre panel shows the final image. It has been overlaid with lines
showing brush marks made during the editing process. The right
hand panel shows a summary of the resulting XML ImageDocu-
ment created by ICE. (It could be a full fledged XML viewer.)

There is a ‘loose’ mapping be-
tween image editing sequences
and a narrative.The bottom panel shows a text output. (It could be a full fledged

word processor.) It contains a narrative that has been automat-
ically generated from the XML. This is possible because the edit
sequence has a natural grammar that can be (loosely) mapped
into English. The language generator could/should be improved
but this simple implementation makes the point.

A B C

Figure 3.16: Two frames from a photoshoot. Sparkle was added to eyes in A (64) and a small highlight
added to the hair (65). Applying the entire ImageDocument to another image in the photoshoot will
work, but only if the eyes are in the same place. In B they are in the wrong place. However, a simple
matching algorithm is sufficient to realign the eye effect (region 65 acts as a control).

Thus Figure 3.15 shows three new ways of navigating the Im-
ageDocument. The first is redolent of selecting Layers in Pho-

Owning the first translator be-
tween English narrative and im-
age editing steps will produce
a significant commercial advan-
tage.

toshop. Right-clicking on a brush mark causes the associated ele-
ments in the XML sequence and the English narrative to be high-
lighted (the colour coding helps show the equivalent edit steps).
Likewise, the XML document and the English narrative can both
be hyperlinked to the brush marks and the associated editor inter-
action.

3-13



3 ICE and ImageDocuments

The first XML ImageDocument to English narrative translator
will define the vocabulary of image editing.

Creating the narrative On first examination the narrative looks
surprisingly rich given that it was generated from the ImageDoc-
uments. It is here, however, that the full power of the ICE GUI
comes into play.

Phrases like “The large sized image . . .” is generated from the
record of the image filename and the EXIF information. “. . . Now
light tint . . .” comes from the BlendPicker setting, “. . . with detail
removed using two or three brushstrokes, i.e. unsharp mask . . .”
comes from the identity of the Palette Source and details of the
interaction.

Clearly ICE has captured lots of metadata. The ImageWizard
path and name tells us that the photograph is a Portrait. A com-
bination of ImageWizard name and where the user brushed over
eyes, mouth and hair identifies the position of the face. In other
words, the combination of the libraries of Sources and ImageWiz-
ards and interactions with the image defines ‘phrases’ of image
editing and by increasing the size of both, the language can be
made ever richer.

At the moment these im-
age editing related ‘words’ and
‘phrases’ are selected from sim-
ple hierarchies of Sources and
ImageWizards but there are
many opportunities to take it
further, e.g. probabilistic meth-
ods similar to predictive tex-
ting.

Dragging Edits around the Image Figure 3.16 shows two pho-
tographs from a single shoot. It is not uncommon to improve one
only to decide that another would be a better choice. There is an
option to apply the ImageDocument to the other image. But the
model or photographer might have moved.

Given the rich metadata there are then several ways to realign
the changes with the new image. One option is to lasso the edits
(as opposed to the regions) and drag them into place. Smarter,
would be to have a tool that uses a computer vision algorithm to
matches the regions under each change and looks for the closest
matched regions in the new image. This is very likely to work well
since, within a photoshoot, the images are very similar. Indeed,
that was the method used in Figure 3.16.

New horizons: Metadata for Photo organisation and
object retrieval

A major problem with computer vision, language and image re-
trieval algorithms lies in the diversity of possible images. Searching
and analysing images on the web is hard, see Page 5-3. The first
step then is to divide the problem and conquor. Most people tend

3-14



Why ImageDocuments?

to take photographs of a limited number of subjects in a limited
number of ways: they have their own recognisable style. Once,
they have edited, interacted with, a selection of their images the
resulting collection of ImageDocuments contains a considerable
amount of detailed information about their world. From this it
is possible to exploit computer vision and language algorithms to
set smart ‘personalisation parameters’ for image editors and image
retrieval systems.

Bootstrapping image recognition algorithms Through the
mechanisms illustrated in Figure 3.16 the edit sequence can be
used to bootstrap software programs or algorithms. For exam-
ple, if the image editor automatically searched the edit sequence
information when an image document was loaded in the viewer, in-
formation associated with eyes for example, could bootstrap other
programs or algorithms. Thus, the presence of the words ’eye high-
lights’ at a high level of the edit sequence tree and detailed brush
stroke information at lower levels of the ’eye highlight’ branch when
associated by the system with brush and other interactions with
objects in the image could be used as training data for a computer
vision algorithm to find faces and eyes in an image.

Figure 3.17: A simple ImageDocument and image browser, click the bottom ‘< Previous’ and ‘Next
>’ buttons to change image. The centre image has 4 derivative ImageDocuments and these are readily
browsed by clicking the upper ‘Previous’ and ‘Next’ buttons.

Training content based image crawlers The edit-sequence
brings other advantages. For example, a combination of the name
’eye highlights’ and the brush movements can ’bootstrap’ computer
vision algorithms for face finding and recognising similar faces. This
can be used to empower ‘image crawlers’ as they index images by
content.
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3 ICE and ImageDocuments

Access to photographs and pictures through a database
Each image, and ImageDocument, can be registered into a brows-
able database, e.g. Figure 3.17, nodes of which are ImageDocu-
ments. An unedited image is the simplest ImageDocument. The
browser then allows the user to browse derivative (and sibling)
results as easily as the origionals (c.f. Versioning in Aperture).

It will also be possible to search the database for results, . . . “I
can’t remember the name but know I did . . . and it was cool”.

Edit-sequences for image retrieval The Sequence Summary in
Figure 5 contains meaningful wizard names. They provide strong
clues about image content, here the metadata clearly indicates
that the image contains a face. The associated brushing differ-
entiates foreground from background and so forth. Importantly,
this metadata was added to the image without the user having
to explicitly add labels and it is immediately accessible to image
retrieval engines. In other words it automatically contributes to a
’folksonomy’. Of course, it can be augmented by manually added
labels such as names. Add a name to the ImageDocument associ-
ated with Figure 3.1 and the narrative can mention that Emma is
blond with blue/gray eyes.

Non-destructive editing An ICE ImageDocument completely
specifies the changes from one image to another. The data struc-
tures and design mean that ICE could become become a non-
destructive editor. It would need suitably fast, GPU based, im-
age processing algorithms and the Java front end replaced by re-
implementing in an operating specific language. (It is relatively
easy to move from the Object Oriented language Java and C++
or similar.)

To be done
Full details of the how the ideas developed in this Chapter

are integrated into the ICE software and how they will develop
are given in Chapters 4. Research that has already influenced the
development of the system are given in Chapters 7 and 5.
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Figure 4.1: ICE configured
as a standalone client appli-
cation. The image processor
(coded in ‘C’) serves a library of
filtered images (Sources) to the
ImageEditor (coded in Java)
through a structured text in-
terface. The ImageEditor itself
comprises a Graphical User In-
terface (GUI) wrapper for the
BlendEngine.

Components and GUI

The design of image editors has been refined and the ideas have
been tested in commercial applications derived from the Fo2PiX
Image Comprehension Environment, ICE.

What follows is a description of the ideas presented in the con-
text of ICE. By working in Java, the ideas and the associated

The PictureEngine provides
over 700 variants of the original
image from which pictures are
constructed. They represent an
increasingly large, organised,
vocabulary of picture making
elements.

data structures are couched in a form that provides an clear start-
ing point for operating system specific implementations (C++,
Objective-C and .net). It works across multiple platforms but Java
on the Mac lags that on the PC.

Architecture and image processor
The overall structure of ICE is shown in Figure 4.1. The Graphi-

cal User Interface (GUI) and associated BlendEngine together form
the ImageEditor that depends on services from the PictureEngine.
The interface between the two uses structured text through a single
entry point. This has advantages, for example, all changes can

Figure 4.2: ICE configured as
a client/server communicating
through structured text where
images are accessed through
URL’s.

be ‘soft’ allowing multiple generations of the interface to work si-
multaneously making team programming easier. More importantly
the system can also configured as a Client-Server, see Figure 4.2.

Dialogue between client and server During launch the Pic-
tureEngine reports a list of services, currently about 700 variants
of the input image in multiple sizes. In addition, it provides both
user-friendly names and information on how the different Sources
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ImageEditor request: startprocess=[no] want_picture=[z_0\x0\1_P_74_]
PictureEngine action: perform_action(0,0,,0,,,92, 80)
ImageEditor request: collect_picture
PictureEngine action: perform_action(0,0,,1,,z_0\x0\1_P_74_, 92,80)
no file on disc named z_0/x0/1_P_74_.bmp so force computation
>>>start computing z_0\x0\1_P_74_
no file on disc named z_0/work2.bmp so force computation
>>>start computing z_0\work2
perform_action(0,-1,originalwork,1420,,z_0\work2, 92,80)
<<< z_0\work2 .... accumulated secs 0.80 .. i.e. 0.03 cpu secs
perform_action(0,-1,,1,, z_0\x0\1_P_74_, 92,80)
<<< z_0\x0\1_P_74_ accumulated secs 1.03 .. i.e. 0.16 cpu secs
writing z_0\x0\1_P_74_.bmp
ImageEditor request: startprocess=[no] want_picture=[z_0\x0\1_P_75_]
PictureEngine action: perform_action(0,0,,0,,,92,80)
ImageEditor request: collect_picture
PictureEngine reply: perform_action(0,0,,1,, z_0\x0\1_P_75_, 92,80)
no file on disc named z_0/x0/1_P_75_.bmp so force computation
>>> start computing z_0\x0\1_P_75_
same name so no need to reload z_0\work2.bmp
<<< z_0\x0\1_P_75_ accumulated secs 1.08 .. i.e. 0.05 cpu secs
writing z_0\x0\1_P_75_.bmp

Figure 4.4: Summary of an extract from a dialogue between the Im-
ageEditor and the PictureEngine. Time consuming results are cached
on disc. This is particularly effective where many outputs from a single
algorithm can be computed in a single pass, e.g. the sieve. In fu-
ture, hardware acceleration will enable on-the-fly image processing and
caching will be bypassed: ‘Non-destructive editing’.

should be categorised. This enables the user interface to be auto-
matically configured.

Figure 4.3: A recurring artis-
tic theme is to simplify the im-
age to remove detail then ease
the hard photographic edges by
warping using x, y offsets ob-
tained from a smoothed ran-
dom noise image. The effect is
exaggerated in this illustration.

A sample of the dialogue between the BlendEngine and the
PictureEngine, Figure 4.4, illustrates the operation of the Pic-
tureEngine. The BlendEngine requests a Source. Then, after it
receives an acknowledgement, it waits to collect the result. Mean-
while, debug output shows that the PictureEngine initially looks for
the image in disc cache. However, in this example neither it nor a
pre-requisite image, ‘work2’, is available from cache therefore, the
request is stacked. Only when ‘work2’ has been computed is the
initial request popped, computed (0.16 cpu seconds) and its’ URL
returned. The next Source requested by the BlendEngine is also
not in cache. But the pre-requisite ‘work2’ image is in cache and
this reduces the overall computing time to 0.05 cpu seconds.

It can be seen that, when asked for a Source, the PictureEngine
recurses down through dependencies either loading from cache or
computing and caching as it goes. A session, therefore, gets faster
as more of the ‘vocabulary’ of Sources have been computed. This
is important because many of the image Sources provided by the
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PictureEngine are the result of what, in classical image editors,
would be the result of multiple filtering operations and many have
shared dependencies.

The PictureEngine services include unsharp filtering, exagger-
ated highlights and blurring. The > 700 Sources are provided by
the PictureEngine use image processing algorithms that include:
Contrast scaling, Histogram normalisation, Object composition,
Separable blur using either discrete convolution or an FFT depend-
ing on image area, Two dimensional discrete convolution, Edge
detection (convolution), Random noise generator, Emboss (convo-
lution), Quantisation, Warp, Nearest neighbour re-sampling, Bicu-
bic re-sampling (up sampling), Morphological filters using standard
structuring elements, e.g. erode and dilate, NTSC colour, HSV
colour, Tiled texture, Trigonometry, Histogram colour detection,
and the non-standard sieve. These algorithms are implemented

The difference between succes-
sive Sources on a single tab
may include, sieve scale, ran-
dom number seeds and blurring
parameters. This is more com-
plex than simply different set-
tings of an effects filter, c.f.
Photoshop. Always the goal
is to produce a useful, pre-
dictable, vocabulary.

in ‘C’ and compile with little change on the PC, Linux and Mac.
Speed improvements will be significant when full use is made of
pixel shaders.

Graphical User Interface
In commercial versions of ICE only the ‘Studio’ is novel and

of interest. It has a Graphical User Interface (GUI) that is ‘soft’.
The functionality and layout are controlled by a combination of an
‘ini’ file, the launch command line and, most importantly, through
encrypted ImageWizards. This has the major advantage that a
number of Fo2PiX products, with different values, can be delivered
from a single codebase.

The Studio will be illustrated using an extended version of the
ArtMasterPro interface, Figure 4.5. The GUI is designed to as-
sociate a visual ‘pattern’ with the current state of the system.
This visual approach is successfully used in many areas, for ex-
ample, software based graphical equalisers for sound systems that
emulate their physical conterparts where the pattern of sliders is
important. It is how people like to work and critical comment in
published reviews suggests that the approach used in ICE is suc-
cessful.

Image editing is a visual thing.
Providing visually obvious and
meaningful patterns that reflect
what the user is doing at any
instant will making it easier to
learn, use and relate to the soft-
ware.

Little should be hidden behind pull-down menus and context
sensitive information, showing the full state of the machine, should
always be visible. For example (Figure 4.5, 73), the position of the
currently selected Source in the hierarchy of 700 Sources is shown
through the state of radio-buttons, tabs and through the posi-
tion of its thumbnail position. Likewise (Figure 4.5, left side and
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top panels), the settings for controls over the Palette and Sten-
cil (mask) and blending and the context sensitive Canvas controls
create patterns that the user rapidly starts to associate with results
and what they want to do.

Sources: pre-defined layers The GUI is organised as follows.
Along the bottom are thumbnails (Figure 4.5, 72 and 73) preview-
ing Sources available from the PictureEngine. Typically, the order
of Sources on a tab follows the extent of a variation between them
and different tabs have different variations on a theme. Here

Figure 4.5: The Graphical User Interface (GUI) is designed to associate a visual ‘pattern’ with the
current state of the system by hiding nothing behind pull-down menus etc.: a PlainSight GUI.

(Figure 4.5, 72), the Sources are increasingly simplified versions of
the original generated with the sieve algorithm. (Figure 4.5, 73)
shows a Source is a composition of those to the left and on many
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Figure 4.7: Shows focus on the
lefthand two dimensional, 2D,
Picker. Horizontally it controls
the hue and vertically the satu-
ration. A single touch or drag
changes both and the result
is previewed in the top panel.
Likewise the righthand bright-
ness/contrast picker. Key is
that the settings of all four con-
trols together with the toggle
flip and inverse buttons form a
pattern that becomes visually
associated with an effect.

tabs there is an equivalent recurring pattern of 7 Sources. The 700
or so Sources, that represent the vocabulary from which the out-
put image can be produced, are organised into sets of tabs. Thus
the region of the GUI organises the vocabulary produced by the
PictureEngine and provides a visual pattern related to the Source
that is currently selected from the library (vocabulary) of Sources.Figure 4.6: The BlendPicker

goes further. Horizontally it
controls the amount (opacity)
of the Palette blended with the
Canvas and vertically it chooses
from a number of merged blend
functions such as Replace (c.f.
Photoshop Normal) and Darken
(c.f. Multiply).

Palette: first component in the Blend pipeline Once a
Source is selected for the Palette, a full size version is com-
puted and is visible in the preview panel, (Figure 4.5, 54A also
see Figure 4.7). The properties of the Palette image are con-
trolled by toggle-buttons and two dimensional sliders, namely the
Colour/Saturation Picker and the Brightness/Contrast Picker, Fig-
ure 4.7.

Stencil: second component in the Blend pipeline A similar
set of controls are also provided for the Stencil. This is a mask or
alpha-channel that modulates the amount of the Palette that will
be blended with the current Canvas (output from previous step).
In this version of the GUI the Stencil and its associated controls
are visible below the Palette controls (Figure 4.5, 54C, 54D 69C).
The Palette and Stencil are blended with the Canvas, (Figure 4.5,
38).
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Blending with the working Canvas The BlendEngine com-
bines these two inputs and the Canvas. In this example, the Sten-
cil, mask or α-channel, fades out part of the image. The blend
function itself is controlled by the BlendPicker (see Figure 4.5, 70)
and 4.6). Unlike a standard picker, it selects a parameter on the
horizontal axis and a function on the vertical axis (US patent ap-
plication 20040239643). This allows people to smoothly slide

Figure 4.8: Why are the
lips and pink border somehow
both luminous and yet indis-
tinct [54]?

between different blend functions such as ‘screen’ (Pure White),
‘multiply’ (Darken) and ‘normal’ (Replace) and simultaneously set
the opacity (Amount).

Unique way of painting the α-channel A mask is modified
interactively by painting (brushing, stroking) or flood filling (Fig-
ure 4.5, 55C). These tools are described in more detail in Fig-

The best way to interact with
an image is to stroke it.

ure 4.18. The facility to brush Sources onto the Canvas is intuitive,
tactile and entirely consistent with the concept of image editing
and users adapt to it immediately. Not only are the tools for in-
teracting with the Canvas visible but the associations between the
settings and what the user is doing them are reinforced by acts of
brushing the image itself, see Page 4-16.

Different ways of viewing the image
It is not just in caricatures that artists look at their work upside

down and in mirrors, it helps check that the composition is not
lopsided. ICE therefore provides ways of temporally viewing the
Canvas flipped left-right and up-down and with a superimposed
grid dividing it into threes, Figure 4.9 and Figure 4.8.

Not everyone sees colour images in the same way. Some peo-
ple, for example, might be viewing the image after printing in
monochrome and many people are red-green colourblind. Holding
down function key F12 instantly provides a new greyscale view.

Figure 4.8 illustrates several
artistic features that are eas-
ily and seamlessly achieveable
in ICE but that are difficult
or impossible with standard im-
age editors. The image is
highly simplified but not blurred
(sieve). The lines follow artis-
tically relevant edges and the
thickness is modulated (sieve,
warp and brushing the mask).
The colour illusion (F12) and
finally, the semi-automatic bor-
der that has complementary
colours (ImageWizards).

But which perceptual greyscale colour model? Consider a more
subtle purpose inspired by Livingstones interpretation [54] of how
Monet handled colour. Perhaps he unconciously (for how could
they have described it without the psychophysical science) devel-
oped an ability to distinguish between the interpretations of colour
and monochrome by the different neural perception systems. Ex-
ploiting these difference produces profound effects. Colours by
Monet, Matisse, Albers, Warhol and many others since the im-
pressionists are more intense, more vibrant, than is expected from
the properties of pigments and dyes alone.

Notice, in example Figure 4.8, that the greyscale associated
with the pink border, lips and hat decorations are not perceptably
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different from their surroundings causing the colours to vibrate and
the regions to be somehow difficult to fixate. The hat decorations
are similar but ‘nailed’ to the Canvas by black lines that are clearly
perceived by both neural systems. The illusion is created with the
help of two tools. Firstly, the BlendPicker to selects an appropriate
colour space. Secondly, by flicking between colour and greyscale
using F12 and tweaking the Pickers. Incidently, in moderation
the illusion adds motion and vibrance, overdone it can be quite
disturbing.

For more details on Art see Chapters 6 and 7.

Figure 4.9: (A) The help and
Sources straps can toggled F6
and F6, c.f.(C). (B) Function
key F11 temporarily flips the
Canvas left to right (F10, up
down) to help check composi-
tional symmetry. (E) F8 super-
imposes a grid to visually check
balance. (D) F9 displays the
original image. (F) F12 pro-
vides a temporary perceptual
greyscale view, see Figure 4.8.

Undo/redo Control-z, control-y key behaviour is determined by
context: last brush mark, step, manual interaction or wizard, see
Page 4-14. Control-c copies the current canvas bit-image to the
clipboard and control-v pastes a bit image from the clipboard into
the start of the application displacing the current session. The
behaviour of of the Help and Sources straps is governed by a per-
sistant preferences and Function keys F5 and F6.
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Figure 4.10: ImageWizard and
ImageDocument structures and
the relationships between them.
The former is a ‘flat’ set of ‘pro-
gram instructions’ the latter is
hierarchical and reflects the na-
ture of the ‘language of image
editing’.

Data structures

PictureEngine
The key ‘C’ data structure is persists during a session. Ses-

sion information for each scale of image being processed is pre-
served. This includes a set of reusable image buffers and an array
of structures containing image information. In the current version
all results are cached on disc as .bmp files (for speed there is no
compression).

ImageEditor
The Java data structures are best understood by viewing their

equivalent XML records, Figure 4.10.
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Figure 4.11: Image used to il-
lustrate how the data in an Im-
ageWizard becomes modified
to create an ImageDocument.
The ImageWizard will help re-
move the dust without detract-
ing from the aged graininess of
the image. (J-class yacht circa
1926.)

ImageWizards
An ImageWizard (ArtWizard in ArtMaster and Creata software)

can be written in XML using the appropriate DTD. More usually
they are generated automatically by recording every interaction in
an editing session, see Page 4-19. On saving, only those parts that
are sufficient to re-create the output are kept, i.e. the system skips
those interactions that were, in the end, replaced.

The ImageWizard has no associated image. It is a program
that can be run in ICE. Following the general header, Figure 4.10,
there is a flat sequence of operations that select the Source images
(SetStnSourceLib and SetColSourceLib), sets the Palette controls
(the ‘modifiers’) and the Blend controls (SetBlend), etc. The de-
fault paint operation simply uses the settings in place when the
ImageWizard was created. Run non-interactively an ImageWizard
(centre of Figure 4.10) it is equivalent to many ‘effects’ filters and
most Photoshop ‘Actions’ although the ease of production means
that wizards often end up more complex.

What sets ImageWizards apart is the level of interaction that
they encourage. The user interacts with the system to customise
the effect to the particular image and to the users tastes. Im-
ageWizards are extremely useful, extremely well received by users
and represent a great step forward for image editors.

A detailed record of a session is richer than an ImageWizard.
It has a hierarchy of events ranging from entire ImageWizards run
in their entirety to individual brush marks.
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Figure 4.12: On prompting
by the ImageWizard, the user
has interacted with the image.
The ImageWizard selected ap-
propriate Sources, setup the
Palette and Stencil (to mask
out all except the dust) and
then prompted the user to
brush over dusty areas. It was
user-friendly and depends on
the sieve algorithm.

ImageDocuments
Figure 4.10 shows part of the XML representation of an Im-

ageDocument after an interaction. The ImageDocument now has
a richer hierarchy. The ImageDocument starts with a header. The
Wizard Entry starts with a header and is followed by the LeadIn
that resets the controls. This is followed by Entries for each inter-
active step. Each of these contains a LeadIn that contains all of
the non-interactive operations and the last WizardFragment usually
contains a LeadOut that completes all non-interactive operations.
The interactions are in between. There is an option to store the
thumbnails associated with each interaction within the document
as PNM ASCII format, Figure 4.13. The WizardFragment Entries
contains the actual interactive steps. It also contains a list of all the
people who have edited that interaction from its original insertion.
This forms a start of a full ’Track-changes’ facility.

Figure 4.13: Embedding a thumbnail edit step within the ImageDocument

The details are typically lengthy because every single brush
mark and click has been recorded however they are stored at a
lower level and so can be tucked away (actually, in the current
implementation they can be stored in a separate XML file and
referenced through an ‘include’).
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Figure 4.14: One method for
navigating the editable interac-
tion list. In this example a step
in the Manual interaction has
been inserted by user ‘ab’, then
modified by ‘ab’. There is a
thumbnail reminder. The edit
list history is shown on the left
and there is an opportunity to
edit interactions within the Im-
ageWizard.

Thus, after a single session an ImageDocument and the asso-
ciated Java data structure . . .

• Is not flat.

• Represents information about the editing session hierarchi-
cally.

• Contains all the information needed to recreate the result
starting from the original image and given the relevent Pic-
tureEngine services.

• Contains non-interactive elements bundled separately from
interactive ones.

Editing itself is an interaction: the ChangeList
Alongside the document structure there is an edit list that con-

tains the undo/redo list. This is currently non-persistant although
to pursue ’Track-changes’ to its conclusion in the future it will be
stored. All interactions are undo/redo and editable. And the edit
itself is undo/redo’able.

It is reasonable that one cannot backup through the steps re-
quired to create a Source since it is not the algorithm that is of in-
tereste but the result. Nor, for the same reason, should one backup
through an automatically executed ImageWizard, nor through op-
erations within an ImageWizard that were executed automatically.
However, each of these blocks can be undone to return to the
previous interaction (and redone). Thus, what is undo/redo’able
depends on the session and is properly a property of the Image-
Document.
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Given this data structure it is possible to move to any inter-
action in the document, change it and automatically recompute,
from that stage forward, to form a new end result. Call it an ‘Edit
Anywhere’ structure.

Track-changes becomes a pos-
sibility for image editing open-
ing the way to proper sharing
of documents and collaborative
working.Of course, editing itself is an interaction and is also be

undo/redo’able and this becomes particularly desirable when work-
ing on an ImageDocument in multiple sessions. Thus, Control-z
works back through the edit list that modifies the ImageDocument
accordingly and redo’ing works forward.

What is needed is a way to navigate these two structures neatly.
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Figure 4.15: In a classical im-
age editor the original image is
transformed into a number of
layers that can then be blended
to form a new result. The re-
sult joins the existing layers and
can form a new starting point
for further processing. The lay-
ers represent both the elements
from which new results are de-
rived and a history of things
that have been produced earlier
in the session.

Image Data flows

A Classical Image Editor

Layers Figure 4.15 illustrates a classical image editor. An image
41 can be filtered, or objects it contains can be selected, using
manual controls (31A, 31B,32) to create layers (spatially aligned
objects). For example, a modified version of image 41 could be
assigned to layer 33A. Similarly, thresholded version of the image
could be assigned to layer 33B. These two can then be blended
with layer 34, using the blend controls 35A, 35B and 36 such that
layer 33B is an α-channel for layer 33A and the result is stored in
Layer 40.

Image editors typically allow a large number of layers to be gen-
erated and for regions (objects) within the layers to be combined
selectively by using intermediate layers as alpha (α-) channels or
masks. With an extensive edit, a large number of layers can be
formed and it is difficult to keep track of the function and meaning
of them all. However, observation reveals that at any time users

Observations reveal that it is

very common to blend just two

layers with a third working layer

to produce the result. It is

worth producing an architec-

ture to make such a step par-

ticularly easy.

commonly combine just two layers with a third working canvas and
that it is particularly advantageous to be able to adjust the layer
properties 35A, 35B, 36 and the blend function 37 and be able to
see the result immediately. Such a short sequence of operations is
so commonly used that hereafter we will call it a step.
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Figure 4.17: shows a diagram
of an example of an image ed-
itor which may be used to edit
image documents generated in
accordance with one example of
the system and method of the
present invention

Layers are used in different ways It is also common for the
multiplicity of layers to be used to record the results of many such
steps and, in combination with a history of operations, they provide
some sort of record of the work session. It is not, however, a full
history. The history in standard image editors does not make it
easy to remember the details of each step in an edit session. It
is particularly difficult because of the huge range of possibilities
afforded by the manual adjustments such as 31A, 31B, 32, 35A,
35B, 36, 37 and any other associated selection mask or α-channels.
What is needed is a good way to organise and navigate all this
information.

Figure 4.16: The Pic-
tureEngine can generate > 700
Sources with carefully chosen
parameters replace layers.

ICE: a Library of Predefined Layers

Layer library An alternative to the manual ad-hoc production of
layers is to provide a set generated from the original image 41 by
carefully chosen fixed adjustments 31A, 31B, 32 and then organise
these into functionally meaningful sets (Figure 4.5). This particular
type of layer is called a Source. Figure 4.17 shows an example of
dataflows through a new image editor, see also Figure 4.16. The
two dataflow models can be melded together, Figure 4.20, but
before considering the whole structure a new dataflow structure
needs to be introduced that builds on the earlier observation that
it is very common to blend just two layers with a third working
layer.

The goal is a customised dataflow structure, the Blend pipeline,
that makes it particularly easy to work with a filtered image or
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source, a mask and a working image or canvas. It is convenient
to use and allows all controls to be real-time. More importantly, it
enforces a regular structure of steps, Page 4-14. This is a subtle
point but it is extremely important for perceived user friendliness
and for it transforms the editing sequence into a natural language.

Figure 4.18: Three special in-
put layers, 54, 55A and 55B are
blended with the working layer,
51 to produce the result 38.
55A and 55B are a ‘mask’ (α-
channel. Changing any of the
controls on the input layers in-
cluding brushed changes to the
α-channel are immediately visi-
ble.

Blend pipeline to make ‘steps’ easier Figure 4.18 shows the
flow of data. It is a customised version of the components needed
to implement a step, Page 4-14. Layers (Sources) are loaded into a
Palette 54 and Stencil 55A (i.e. mask or α-channel) where they are
subjec to controls (52A and 53A) that include brightness, contrast,
affine transformations, etc. These are then blended with a copy
of the working Canvas 51 to produce a new result 38. The choice
of blend function and amount (opacity) is controlled by the Blend
Picker (US patent application 20040239643, see Figure 4.6).

The entire pipeline is kept open and so subject to real-time
changes in any of the controls until a ‘Fix’ button is clicked. Playing
with the result this way is easy because the Picker controls are
compact and visible during the blending process, see Page 4-4,
and any changes can be (infinitely) undone and redone.

Stroking the image
But there is one further key innovation that makes the system

particularly user friendly. It is possible to interact directly with the
image, Page 4-4. In particular, the user can brush over the image.
For example, imagine that the Stencil (α-channel, 55A) is all zero
preventing any of the Palette (54) from showing through. Imagine
too that the Palette shows the edges of important objects and
finally imagine that the blend is set to ‘multiply’ (in ICE, 100%
Darken). Then brushing (using the mouse or graphics pad) along
regions that contain the edges will have the effect of revealing
the edge. Notice that the user does not have to be accurate, the
illusion is of painting and this makes it natural and rewarding. In
reality the computer has done the work of finding the edge line.
The system is leveraging the power of computer vision algorithms
to compensate for unpracticed manual drafting skills.

It is not just painting edges that becomes more natural. Un-
sharp filtering, emphasing highlights and lowlights all benefit. More
and better computer vision algorithms will steadily increase the va-
riety of ‘component’ that can be brushed into place. The idea is
getting closer to a vector graphics system, Page 3-4.

People want to interact with
the image, stroke it. It is natu-
ral and intuitive.
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It works because the user is actually brushing the α-channel and
the result is the max of (55B and 55A). The quality of the edge
is not dependent on careful drawing. It is quick like a professional
sketch artist is quick. Provision is also made to flood-fill regions
of the α-channel according to thresholds set on the Canvas (51).

Improved blend pipeline
A further improvement to the system is shown in Figure 4.19

(patent applied for but not yet fully implemented in ICE). It is a
mechanism for using the brush movements to alter the image in
a painterly way. Instead of deriving the Palette image 54 from a
Source it is derived from two images 61 and 63 using the function
64. Image 61 is derived from the Source instead. Pixels in the
second image 63 are obtained from 61 but are offset or translated
according to information in 62. The information in 62 corresponds
to two image sized matrices, X and Y that represent pixel posi-
tions. Normally, subscripts correspond directly to the pixel po-

Figure 4.19: shows a method
for enabling further enabling
brush stroke information to be
used to simultaneously improve
the image and improve the
record of interactions with the
image.

sitions, i.e. the subscripts at position [X(303), Y (200)] have the
values 303, 200. However, as the brush or pointer is moved over
the image being edited so the subscripts in X and Y , over which
the brush moves, are changed to remap the pixel values in 61 to a
different position in 63. For example, the subscripts to the max-
imum pixel value in the line from one sampled mouse position to
the end of a brush stroke, [Xm,Y m], are copied to all positions
from its start position, [Xm,Y m], to the end of the stroke. The
effect is a streak, that can be made to fade, along the line of the
brush mark.

Thus, this approach uses the brush motion to produce a paint-
ing effect whilst maintaining the ‘real-time’ properties of the blend-
pipeline in which the controls 52A and selections 52B, 53B, etc.
can be changed and the effect of the brushstrokes is maintained in
the final result.
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Figure 4.20: A diagram of the entire system including control data pathways; that are better visualised
alone

The blend pipeline is extremely user friendly particularly when
creating artistic results, however, a full image editor needs to be
able to do all that current editors do. Figure 4.20 shows a combi-
nation of the two described in Chapter 4.2. It is overlaid with the
control pathways that enable everything to be recorded and con-
trolled indirectly. These control pathways are shown more clearly
in Figure 4.21.
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Figure 4.21: The bidirectional control data pathways

Control pathways and history
Figure 4.21 shows the editing system overlaid with the bidirec-

tional control data pathways. In this representation of the editing
system, all of the manual control systems 31A, 31B, 32, 52B, 53B,
35A, 35B, 36, 39, 52A, 55C, 53A, 53C, 56 and 60 are connected
to a recorder 65 and a data base 66 and are controlled through
a graphical user interface 67. The values of these controls are
recorded during manual use of the editor and can also be set and
adjusted either automatically or manually when replaying or using a
pre-recorded sequence. These records generate the data structures
discussed in Section 4.2.

Among the key records are those from the brush 55C, itself
controlled by a pointing device such as a mouse or stylus where
not only position but also pressure, tilt angle and rotational angle
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Figure 4.22: Summary of data
structures. On the left, black,
is a scale based spatial tree
where nodes are layers or ob-
jects. Smart computer vi-
sion algorithms are leveraged
to both improve the the rel-
evance of the nodes and the
means for navigating through
them. On the right, solid
blue, is the ImageDocument
and, in dotted green, the asso-
ciated ChangeEdit data. Smart
language processing algorithms
are leveraged to both improve
the the relevance of the nodes
and the means for navigating
through them.

are also important and also the magic wand flood fill tool 55C that
is also controlled by the pointing device.

Edit lists associated with objects
In the examples described so far the edit sequence is associated

with the entire image. This need not always be the case. For exam-
ple if 45 is a skin filter then 55A will mask out all except the parts
of the face showing skin thereby labelling the face. Thus, those
parts of the EditList and the ChangeList then become associated
with the face. They are ‘face methods’.

The set of data structures in ICE are summarised in Figure 4.22.

Summary
A large library of Sources obtained by analysing an image forms

a ‘vocabulary’ with which photographs can be improved. Im-
ageWizards extend the vocabulary to doing things. Interactions
with the photograph are made particularly easy through an inno-
vative Blend pipeline that supports a brushable α-channel. The
whole is presented through a ‘PlainSight’ interface that visually
relates the state of the system with the current action and this
makes it easy to learn. Finally, ImageDocuments capture every-
thing that is done to create an output and these can be re-edited
keeping track of who made which changes and where.
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To be done
Having implemented and used ICE new horizons for image edit-

ing become clearer. Here are a few.

Development Enables Markets
Move away from java. Hard-
ware acceleration.

Non-destructive editor that ex-
tends to interesting, creative
and profitable works.

Integrated image editor for pro-
fessional and wider groups of
digital camera owners.

First definition of image editing
language.

Good ways of sharing editing
between professionals and on
the the web.

Integrated image editor up-
grade 1 and fun, web oriented,
visual sweeties.

Good composition recognition. Smart cropping, colour bal-
ance and distribution of detail.
Source ‘Main Colour’ 7 is al-
ready making headway in this
respect.

Integrated image editor up-
grade 2 and fun, web oriented,
visual sweeties.

Inference of buildings and rigid
bodies from multiple images in
a sequence.

Object specific photographic
and artistic computer vision
based tools. Extension of the
vocabulary of image editing.

Integrated image editor up-
grade 3.

Integration of global position-
ing system data with images.

Architectural images to be
shared by position. Different
interpretations of scenes can be
accessed and shared through
the web.

Integrated image editor up-
grade 4.

Inference of soft shapes for
faces and animals from statis-
tical models.

Smart tools for editing faces
and creating portraits. Power
assisted editing.

Extensive use in the home.

Bootstrapping computer vision
recognition algorithms from Im-
ageDocuments.

Extended MPEG-7 compliant
metadata tagging permits ob-
ject finders for faces, people,
houses, cars, animals etc .

Image retrieval.

Figure 4.23: Indication of the opportunities that can be grasped starting with the concepts in
ICE. It will enable computer vision and language algorithms to be steadily introduced producing
a stable product line.
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5 Algorithms for understanding images

Figure 5.1: Linear blurring,
top right, simplifies at the ex-
pense of smoothed and indis-
tinct edges. Median filters, bot-
tom left, have clearer edges but
still imprint their shape onto
the image. Whereas, bottom
right, shows that the unique
sieve (’buZZ’ Photoshop plu-
gin, Fo2PiX, Cambridge, UK,
2001) simplifies without chang-
ing the shapes of features.

Algorithms for image processing

The automatic recognition of objects in two dimensional
photographs is critical for image understanding. The ideal system
would be able to pass over an image, feature by feature, object
by object and label each where objects might range from people
and cars to terrorists and malignant cells. It would automatically
generate a graph, probably a tree, of relevant objects.

Framing the idea this way works for very specific computer vi-
sion problems such as finding defective printed circuits, car number
plates and, perhaps, breast tumours and individual suspected crim-
inals. However, in general it is badly framed because a single image
means different things to different people. To one person the im-
age might be about a pretty woman, to another her hair style, to
a third the car she is leaning against, to the aspirant suitor her
ring finger, to a photographer the poor white balance, and to her
husband ‘who took the photo?’. Clearly the meaning of an image
is not universal, it can only be established in the course of a dia-
logue with the user. It is as much in the eye of the beholder as the
image itself.

Thus, the intelligent use of computer vision algorithms to make
smart image editors, smart image organisers and perform image
retrieval depends on getting people to reveal their interests. In
content based image retrieval, for example, the single biggest im-
provement is to encourage the user to provide feedback on the
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Figure 5.2: Showing that me-
dian filters robustly reject im-
pulsive noise where linear con-
volution filters do not. The
signal, shown as points at the
top, is either filtered using a
window of 3 samples, upper
trace, or 5 samples, lower trace.
Whereas the running mean fil-
ter smoothes the signal, right
column, the median filters do
not. Instead, median filters
completely eliminate short lived
outliers, i.e. medians are ro-
bust. However, neither median
nor mean filters preserve scale
space.

relevance of an initial search (we find a 30 to 40% improvement
that is consistent with work of others, e.g. [90]).

This document presents two important steps that address the
original problem. The first is the image editor that is easy and
relevant to use and that encourages people to ‘stroke’, ‘touch’,
‘point to’ and address important features of images, just as they
do in their lives for their possessions, friends and things of interest.

The second is an innovative image processing algorithm de-
scribed here.

The problem of finding objects in images
A typical image of 5 Mpixels (15 million 8 bit samples) con-

tains just a few objects of interest. If the goal is to identify say
10 objects, then information is to be concentrated in the ratio
1,500,000 to 1: it is like looking for a needle in the proverbial
haystack. Since objects of interest are usually large relative to the
image pixels, one approach is to start by using filters to simplify
the image, i.e. hopefully concentrating the information by, say,
1000 to 1 leaving 1,500 segments for more detailed analysis. After
introducing appropriate filters a twist to this approach is discussed
together with ways forward.

Scale Space Filters
Classical signal and image filters are linear and, for these, there

are well developed theories. For example, in the 1980’s Witkin [88],
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Koenderinck [49] and others [77, 52] see also [39] drew attention
to the particular importance of scale-space preserving, diffusion,
filters. The goal is to simplify the image without introducing any
new features. The idea is best illustrated by example.

The key algorithm leading to
the development sieves was not
image processing. It arose from
a need to remove noise from the
tiny currents flowing through
single protein molecules, pico-
amps through single channels in
biological membranes (first de-
scribed by Nobel prizewinners
Neher and Sackmann). How-
ever, the demand for a quanti-
tative, statistically optimal, fil-
ter was short lived: low noise
operational amplifiers obviated
the need. However, once dis-
covered it was clear that sieves
had much wider application.

Imagine projecting a black and white image onto a screen for
an hour. Now turn off the projector and turn on a thermal imager.
White areas will be warmer than dark areas and the image will
be visible. Over time heat diffuses from the warm to cool areas
and as locally hot and cold spots are smoothed out so the image
becomes blurred and, with fewer thermal maxima and minima,
simpler. At no time during the diffusion process are new warm
and cold regions created and this property is known as scale-space
causality preserving.

Rank filters Note, there is an implicit assumption that impor-
tant features are associated with local maxima and minima (ex-
trema). Gaussian filters uniquely among linear filters have this
property [45]. In the early 1990’s the library of causality preserving
filters was extended to include non-linear diffusion filters [64, 59]
that produce attractive results but confound scale and contrast.
Other non-linear filters that were explored included morphological
dilation (max) and erosion (min) filters [47]. Like median filters,
Figure 5.1, they have structuring elements that imprint their shape
on the image. Unlike medians however, they are very sensitive
to noise (a characteristic that is exploited elsewhere to generate
‘painterly’ effects). By contrast non-linear sieves [2, 6](best confer-
ence paper and see Figure 5.1 bottom right) also use rank ordering
properties but are extremely robust to noise and do not have struc-
turing elements.

Figure 5.3: Sieves are a se-
ries of increasing scale rank
order filters (φS , where S
is the filter scale). Where
maxS,E is a locally maximum
extremum of scale S, simi-
larly minS,E , the filters, φ,
can be c where at each scale
maxS,E are merged with their
nearest neighbours. o Where
minS,E are merged. M Where
first maxS,E then minS,E are
processed and N where it is
minS,E then maxS,E , or m
where extrema are processed
data order. All preserve scale-
space, robustly reject outliers
and are idempotent.

Median filters are widely discussed in the literature, and used
in industry and image editors. One of the claimed advantages over
linear filters in two dimensions is that they preserve the edges of ob-
jects, Figure 5.1 and in one dimension they preserve the transients
(edges) of pulses (see Figure 5.2).

However, this is only roughly true. Despite the publication
of numerous algorithms for optimally weighting median filters and
generating optimal structuring elements by the non-linear filtering
and mathematical morphology research communities, two prob-
lems remain. Firstly, experiments show that the claimed ability of
median filters to preserve the shape of pulses (in one dimension)
is, on average, no better than linear Gaussian filters [18, 73].

Likewise in two dimensions, some edges ‘look’ better after me-
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Figure 5.4: Illustration of the
1D sieve algorithm. In one pass
the n data values (red dots)
are run-length coded (cyan cir-
cles) and local extrema, identi-
fied by ‘looking’ left and right,
are mapped into a list of lists.
One extrema list for each scale,
1 to n. The filtering process
then starts by merging all ele-
ments in the scale 1 list with
their nearest, in value, neigh-
bouring runs. Each merge typ-
ically requires two pointers to
be changed as two runs are
linked and the new, longer, run
is remapped into the list of lists.
Filtering stops when the desired
scale is reached and the output
is rebuilt.

dian filtering than after Gaussian filtering (blurring) but detailed
analysis shows they are located no more accurately than after Gaus-
sian filtering. Worse, in two dimensions the shape of the window
(structuring element) is imprinted on the output of the filter and it
becomes difficult to disentangle underlying properties of the image
from systematic errors that have been added, Figure 5.1. A second
consequence is that such independent filters do not preserve scale-
space causality and this too means that median filtering obscures
underlying, large scale, information in images.

Scale Space sieves solve the problem
Sieves are covered by Segmentis patents US 6,081,617, US

5,912,826, US 5,917,733 together with European equivalents.
Although developed for single channel analysis, the concept of

sieves [2] was first exploited for analysing protein structures [3].
It shown to be the best way to distinguish hydrophobic from hy-
drophyllic regions. The algorithm was criticised because, at the
time, it was not understood ‘why’ the algorithms worked so well.
A criticism that precipitated more detailed work, in the 1990’s, on
the robustness of one-dimensional sieves [4, 6, 7, 5]. In one dimen-
sion there is no difference between an algorithm that operates on a
window and one that operates on level connected sets, however, in
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Figure 5.5: Sieves do not use
structuring elements (top). In-
stead, they operate on level
connected sets of pixels, i.e.
they follow edges in the data:
they are shape free. Bottom
right, the sieve is about to re-
move a set of nine pixels that
form a local extremum. Unlike
a filter based on a structuring
element or window (top) the
shape of the selected set fol-
lows the edges. In 1D increas-
ing scale sieves remove increas-
ingly long extrema, in 2D they
remove extrema of increasingly
large area and in 3D, volume.

higher dimensions the difference between the two is profound [94],
Figure 5.5 and Figure 5.1 bottom.

The key properties of sieves arise because they use level con-
nected sets. At this time there was also interest in ‘reconstruction
filters’ that also appear to preserve scale space causality (Vincent,
Salembier) that are something of a hybrid between sieves and clas-
sical mathematical morphology.

Initial results Simple experiments on segmentation [44, 42, 40,
41, 43] and pattern recognition [69, 6, 44, 68, 70] provided a better
insight into their practical value and how sieves might be applied
to segmentation [6, 67, 8]. Sieves proved very useful and the
work was, therefore, followed up by establishing the mathematical
properties of 1D sieves [22, 10, 9, 20], multidimensional sieves [14,
12, 11], their relation to weighted median filters [93, 92, 91] and
mathematical morphology [15]. A short formal description of sieves
is given in Chapter 7.

Complexity of sieve algorithms It should be emphasised that
the obvious ways to implement sieves have a high order complexity,
> O(n2) (where n is the number of samples or pixels in the image)
and this did not encourage other research laboratories to work with
sieves. Fo2PiX (UEA, Segmentis) did not to draw attention to the
patents that explain how it can be implemented.
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A fast algorithm is essential. A 1D implementation is sum-
marised in Figure 5.4. Sieving starts by passing though n data
points once to map the signal into the list of lists and a second
time to pass through each list of the list of lists to both filter, < n
elements, and rebuild the processed signal. Note that as the scale
becomes larger so the number of lists reduces yielding O(n) [13].
This is quite unlike classical morphological or linear filters where

Figure 5.6: Order complex-
ity of different versions of the
sieve, O(N1.1)

processing time per point usually increases with scale. The 2D case
is similar where runs become patches. It is more complex because
each patch usually has more than two neighbours requiring a search
for the neighbour with the closest value to the current extremum.
However, patches are either small and so have few neighbours, or
are large in which case they are only analysed when the numerous
small regions have been eliminated. The algorithms work out to
be approximately O(N1.1) in two or more dimensions [11]. Cur-
rently, there are two implementations of 2D sieves niether have
been optimised to take advantage of modern pipelining

Figure 5.7: Shows a simple im-
age, left, and the correspond-
ing semantic, object, tree. It
is a goal of computer vision to
do this automatically. It is not
possible using Gaussian filters,
wavelets or Fourier transforms.

Merging at each scale can be done in various ways. If, at
each scale, the maxima and minima are merged in data sequence,
the result is equivalent to using a recursive median filter at that
scale, an m sieve. It is left-right assymetrical, i.e. parsing left to
right is likely to yield a different result from right to left. At each
scale an alternative is to merge first the maxima then the minima,
or vic versa. These two alternatives are also different, i.e. they
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are up-down asymmetric. In practice, particularly in two or more
dimensions, these four alternatives yield almost identical results
and all four are have a robustness comparable to median filters.

A slew of papers on 2D images then followed. Once again
their robustness was established [31, 32]. More importantly, a new
representation of the sieve transform was developed: a new twist.

Figure 5.8: Top, a sieve decomposition produces granules that are
closely related to the objects. Bottom, shows that a sieve goes a long
way to achieving the decomposition into objects. Thus the sieve looks
a promising starting point for analysing real images.
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1D-sieve 2D-sieve DTCWT LBP Co-occurrance
Mean 0.718 0.943 0.556 0.509 0.692

Table 5.1: Reliability identifying anisotropic textures, 1 is perfect. The
2D-sieve performs the best.

The Sieve decomposition and generating tree structures
Simply filting an image is useful, about 60% of objects that vol-

unteers identified (about 200 people each marking up 50 images)
included large scale extrema and so removing detail by removing
small scale extrema is likely to concentrate information. But it
is crude. What is really needed is a hierarchy of objects such as
that shown in Figure 5.7. Albeit a stylised image it makes a point
because, unlike the Fourier transform or wavelet decomposition,
the sieve will actually generate such a hierarchy, Figure 5.8 in one
pass. This forms a conceptual framework for understanding how
sieves might be used.

In reality, it is more difficult. A sieve decomposition of real im-
ages produces trees with far too many nodes [16, 17, 36]. It is only
recently that methods for simplifying the tree and, as important,
efficient code for implementing such simplifications, have become
available. Figure 5.9 shows output from the implementation with

Figure 5.9: Left panel shows
a simple image. Middle panel
shows the associated sieve tree.
It is a mapping of the image,
transformed by no loss of in-
formation. Right panel shows
the result of a simple clustering
algorithm to control the build-
ing of the tree during the trans-
form. If a node (granule) is suf-
ficiently similar to its parent the
two are simply merged. The
concentration of information is
greatly increased.

an order complexity shown in Figure 5.6. It is promising.
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Figure 5.10: A textured im-
age sieved to five scales using
a M-sieve. Resulting Chan-
nel images are Bi-polar. Red
is used to denote +ve granules
and blue -ve granules.

Applications of sieves

Applied to dynamic shape recognition Recently there have
been thorough studies into the relative merits of sieves over the best
competitor algorithms. For example, the 1D sieve can generate
features for lip reading (hidden Markov models implemented in
HTK) and the results remain the best so far, first outlined in [30]
and culminating in [57].

Applied to texture recognition The identification of textures is
a longstanding computer vision problem. Particularly, anisotropic
textures such as cloth where what it looks like depends on the
viewing angle. Table 5.1 shows result suggesting that the 2D-sieve
is the best. Texture is characterised by sieving each texture image
to scales, [s1 . . . sN ] where log10 sn are equispaced between 0 and
log10 Smax, Smax is the maximum chosen scale and N the number
of sieved images.

Figure 5.11: Bottom: an im-
age with its associated stable
salient contours. These con-
tours can be assembled into a
saliency tree (top) which is an
edited version of the full sieve
tree.

Tex-Mex features are formed from statistics derived from chan-
nel images. Noting that the setting Smax = 30 removes all the
texture from the images and setting N = 5 results in five images
sieved to scales [1, 2, 5, 13, 30]. Five channel images are formed
from these sieved images at scales 0 to 1, 1 to 2, 2 to 5, 5 to 13
and 13 to 30. Figure 5.10 shows some example sieved images and
resulting channel images. The intensity of the granule, or channel,
images as a function of scale is an indicator of the scale-distribution
of the texture features.

Applied to feature point detection Early explorations into us-
ing sieves to help match stereo pairs of images [33, 61, 60, 62, 16,
21] have been overtaken by a method that uses ‘Maximal Stable
Extremal Regions’, MSER [56]. However, recent work shows that
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the MSER appears to be a special case of the sieve (an open-
ing sieve). Actually, alternating sequential and recursive sieves are
found to be still more robust [R. Harvey and Y. Lan, in prepara-
tion]. Harvey also made a systematic comparison of algorithms
[c.f. K. Mikolajczyk, C. Schmid, A performance evaluation of local
descriptors Technical Report Oxford, to appear PAMI] that show
that sieve algorithm outperforms competitor methods for finding
salient regions.

Image retrieval Current interest is in finding regions in the im-
age that are likely to remain unaffected by noise, projective trans-
formations, compression and lighting change. In a comprehensive
set of trials [58] a type of region known as Maximally Stable Ex-
tremal Regions (MSERs) were found to be the best performing.
It turns out that MSERs are generated by a variant of the sieve
algorithm known as open/close-sieves. It is therefore possible to
parse a sieve tree and to generate Stable Salient Contours (SSCs)
which are carefully selected nodes from the sieve tree that have
all the stability and robustness properties associated with MSERs.
Thus, as in Figure 5.11 the sieve tree generates stable regions “for
free”.

Figure 5.12: Highlights and
lowlights (extrema) are impor-
tant in pictures. So too are
edges, but not too many and
not too slavishly accurate.

Related Recently, the sieve algorithm has started to appear in
the technical literature under different names apparently reinvented
independently. In addition to the MSER (above) a Dutch team
reported an algorithm that partially achieves the sieve [86]. A
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French team describes the algorithm, they refer to finding image
components [63].

Applied to finding components for artistic pictures It ap-
pears, therefore, that sieves form a promising starting point for a
number of computer vision solutions. For most of these, however,
the sieve is just one component of a number of algorithms that are
required for the overall functionality.

However, there is one application area where the algorithm
makes a particularly large contribution: forming artistic pictures.
It is reported in [19] that a sieve based scale-space decomposition
replicates a basic aspect of painting. Namely, it identifies light and
dark regions of a photograph and does so at multiple scales. It
parallels the way artists represent light and dark at multiple scales,
Figure 5.12.

The sieve finds extrema of light and dark, preserves the edges
of such areas and does so at multiple scales. Experience in the
laboratory and commercial market shows that it contributes greatly
to producing good digital art. It is this application of sieves that

See full technical details on
Page 7-2.

is pursued in Fo2PiX.
Initially, the algorithm was released as a simple Photoshop plu-

gin. However, it quickly became clear that the properties of the
sieve lead people to use it not as an ‘effect’ but as a tool.

The wide variety of applications
in which the sieve appears to
excel suggests that the algo-
rithm will find wide commercial
use as the fast sieve algorithm
becomes better known.

For the first time it was possible to extract artistic components
from the original photograph that could be used to create pictures.
Photoshop actions were constructed to make the process easier but
it became clear that a better environment for creating pictures, one
that used ‘steps’, would be extremely helpful, see Page 4-16.

Colour sieves Usually the sieve works on the luminance colour
channel (grayscale). There is a conceptual problem extending it
to colours since it depends on find an order (maxima and minima)
and one can only order in one dimension, i.e. one colour channel.
However, there is a pragmatic work around. The sieve has recently
been extended into the color domain [27, 28] via the use convex
hulls to define color extrema which are then merged to their nearest
neighbours, found using a Euclidean distance measure. Figure 5.13
shows an example color sieve decomposition of a sample image.

Arguably, it is the best ‘posterising’ (colour segmentation) re-
sult yet seen. However, at present the algorithm itself is too slow
to be practical. It needs more engineering.
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Original 30 201

640 2311 4421

Figure 5.13: Sample image and RGB space color sieve decomposition
to labelled scales.
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6 Why become creative with digital photos?

Why develop image editors for Art?

Figure 6.1: Once only used to producemovies, magazine covers, advertisements and illustrations now
they are increasingly used to create personalised pictures and decoration. The magazines on the left are
increasingly filled with ‘how to ... decorative art ... in ten steps’.

From desktop publishing into the creative home
The price of pictures is falling again. It took an all time world

expert, Rubens, months to paint his daughters portrait, Figure 6.2.
A person standing would cost ’an arm and a leg’ more1. Lesser
painters took days to produce lesser alternatives. Either way per-
sonalised pictures were expensive. Artists responded to a demand
for unique pictures. Then of children, wives, mistresses, dogs,
horses and estates. Now, just add cars and boats. Unique, be-

Figure 6.2: Rubens’ daughter:
personalised picture but expen-
sive.

cause they reflected the lives of individuals.

Technologists respond As soon as they can, technologists also
respond to a demand. They produce kit. Then they improve qual-
ity and reduce costs. The price of non-personalised pictures, wood-
cuts, engravings dropped with the advent of the printing press.
Even more so for the printed word. Mechanisation had a huge
impact.

1The artist painted the portrait but subcontracted the arms and legs to a
specialist: the origin of the expression
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Figure 6.3: Cheap photogra-
phy revolutionised access to in-
dividualised images.

Digital computers, laser and ink-jet printers and desk top pub-
lishing software delivered a second blow to the price. They de-
livered cheap personalised publishing. Experts still do it better,
but everyone can now produce reasonably printed material. That
leaves pictures.

Photography Photographs reduced the price of personalised im-
ages fast. Initially the preserve of experts, the Kodak Brownie
camera and supporting commercial developing and printing services
lead to a century of reducing prices. Photography lead to a new
genre of picture. One should distinguish ‘snapshots’ from the artis-
tic photographic image. Artistic photographs that are sufficiently
interesting to hang on the wall are not simply good snapshots.

Figure 6.4: Photography be-
coming art (Emmerson, 1890).

Editing digital Now technologists are precipitating another rev-
olution. Coupled with a new generation of digital printers digital
cameras are reducing the cost of personalised images to tenths of
cents. Suddenly, one can select the one photograph worth hang-
ing on the wall, from thousands. It is rare to manage perfection

Figure 6.5: Often, pho-
tographs are the starting point
for art (Warhol).

straight off. The original is improved with the help of image editing
software. Changes are made to red-eye, spots, unwanted objects
and bad colour balance. Why stop there? Many direct attention
by blurring the backround and masking it out. Why stop there?

Figure 6.6: Now, anybody can
produce individualised art but
only with the right software.

Why indeed. Most office pictures and particularly those in the
hotels and homes are just that, pictures not photographs.

Slipping into Art Clearly photographs can be art. But artists
add more. They might start, and often do, with the projected
image, camera obscura, lucida, photograph, and then paint (e.g.
Van Eyck to Hockney, etc.[37]). They use skills that most people
do not have and the skills, or a lack of them, are a bottleneck
for most people. As with desktop publishing, people do not aspire
to being better than painters but they do want to be creative, do
their own thing and have personalised pictures and decoration.

With Fo2PiX products they can do it. Like the differences
between photography, oil painting and watercolours digital pictures
are a new genre: desirably interesting, personalised, artistic and
accessible. Once professional photographers and others see the
software demonstrated they buy. Fo2PiX sales figures uncovered a
latent demand.
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Figure 6.7: Once people see
the Fo2PiX products, they buy.
They want to be creative and
have personalised art. What is
needed now is a bigger market-
ing machine.

What can ICE do?
Currently, there are two basic commercial applications de-

rived from ICE. ArtMasterPro, that has been used as an example
throughout this document and a cheap, fun version, Creata with
functionality limited to a few ArtWizards. New ArtWizards are
downloadable for both. Here are a few examples of what ArtMas-
terPro can do. Of course, the quality depends partly on the skills
of the user and partly on the ease with which the user can produce
the result. The purpose of the following is to illustrate where some
of the algorithms and interface properties are particularly relevant.

Figure 6.8: This output de-
pends on: the sieve, the blend-
pipeline and Gaussian high-
pass filtering and the ability to
record paint strokes.
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Figure 6.9: This output de-
pends on: the sieve, Gaussian
filtering, Blend-pipeline, image
warping.

Figure 6.10: Extending the
current ICE to include standard
editing functions would be use-
ful. Here, the ‘torn’ edges of
the colours that would be out-
put from the current ArtMas-
terPro are made slightly more
substantial by edge enhance-
ment to give a more polished
finish.
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Figure 6.11: This output de-
pends on: the sieve and the
ability to fine tune the balance
between colour and tone using
F12.

Figure 6.12: Depends on a
photographed pencil texture,
sieve, blend-pipeline. The
starting photograph was pre-
processed in Photoshop.
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Figure 6.13: Output depends on: the sieve, the blend-pipeline, warped Sources and F12 colour checker.
The result features complementary colours (face against blue background) and lips in an elusive, tonally
invisible, colour that makes their position uncertain. Black produces a strong signal in both the colour
and monochrome brain perception systems and ‘nails’ elusive colours onto the canvas. The eyes assist,
they always catch the attention of humans. (When printed, the colour illusion is only visible when the
printer is well calibrated.)

Actually,

• it is fun

• absorbing

• rewarding

• and printed on A1 canvas, cool
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7 Algorithms for Art

This chapter is extracted from the paper underpinning a
prizewinning ‘best poster’ [19].

Abstract
Artists pictures rarely have photo-realistic detail. Tools to cre-

ate pictures from digital photographs might, therefore, include
methods for removing detail. These tools such as Gaussian and
anisotropic diffusion filters and connected-set morphological fil-
ters (sieves) remove detail whilst maintaining scale-space causal-
ity, in other words new detail is not created using these operators.
Non-photorealistic rendering is, therefore, a potential application
of these vision techniques. It is shown that certain scale-space fil-
ters preserve the appropriate edges of retained segments of interest.
The resulting images have fewer extrema and are perceptually sim-
pler than the original. A second artistic goal is to accentuate the
centre of attention by reducing detail away from the centre. The
process also removes the detail providing perceptual cues about
photographic texture. This allows the ‘eye’ to readily accept al-
ternative, artistic, textures introduced to further create an artistic
impression. Moreover, the edges bounding segments accurately
represent shapes in the original image and so provide a starting
point for sketches.
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Figure 7.1: Hockney [37]
draws attention to how, in this
Ingres drawing (A), “the cuff of
the left sleeve is not followed
‘round the form’ as you would
expect, but carries on into the
folds”. (B) Red overlay indi-
cates the relevant lines. (C)
Photograph of a similar sub-
ject. A Sobel edge filter (D)
does not reveal the artistic line.
(E) Shows in red the line line
from (D) that follows the cuff
rather than the light. There
is too much detail. Blurring
does reveal the large scale cuff-
to-sleeve highlight however it
yields edges (D) that are incom-
plete.

Introduction
A photographer tends to choose uncluttered backgrounds and

make careful use of focus to direct attention. Of course, lens
blurring is both easy and effective for it exploits the natural and
powerful way in which the brain rejects non-foveated regions of a
scene (they are simply out-of-focus). The technique finds its way
into rendering, digital art, advertising, and video through the Gaus-
sian blur filter widely used to de-focus background material. But
the method is rarely used by painters. Rather, they direct attention
by selecting detail and manipulating textures and geometry.

By contrast, a painter starts with a blank canvas, adds paint
and the more skilled knows when to stop. It is the progressive addi-
tion of detail that characterizes the process of producing represen-
tational art in which only some detail directly represents that in the
original scene. It difficult to capture representational detail manu-
ally from three-dimensional (3D) scenes onto two-dimensional (2D)
canvases, but this does not satisfactorily explain why trained artists
limit the amount of detail they use. After all two dimensional, pho-
tographic quality, images have been traced for over five centuries
by those projecting images onto surfaces using concave mirrors and
lens [37]). But the evidence from the resulting pictures suggests
that artists pick only those details that resonate with their artistic
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interpretation. They choose to ignore some objects and lots of
detail. Painting is not photography.

The importance of controlling detail
Selectively removing detail simplifies a photograph and is im-

plicit in existing methods for producing painterly pictures. Systems
for creating pen-and-ink drawings from existing images clearly re-
move both color, Lc, and spatial detail, Ls, (these two related ideas
are lumped together in Lr = λ(Lc, Ls)) and simultaneously add
techniqe and artistic detail in the form of pen strokes [74]. In the
case of painting Haeberli samples the image and then modulates
and spreads the color over a region using a brush, an action that
also adds technique detail by simulating the medium and stochastic
brush strokes that simulate the artistic interpretation [29]. By mod-
elling the flow of water dragging pigments over paper Curtis [25]
removes detail from the original photograph and simultaneously
substitutes texture detail (Lt) replicating a watercolor painting.
Hertzmann starts by removing detail with large brushes and then
uses finer brushes to selectively refine the picture where the sketch
differs from blurred photograph [34]. These methods sub-sample
the source image either before or after smoothing: the standard
way to remove detail and prevent aliasing. In this paper, however,
we concentrate on another way to control the level of detail in a
digital image. We do not address the separate problems of adding
technique and artistic detail.

Of course, form is extremely important and should be exploited
in representational art where available, as to an artist working from
life or to a digital artist working with a three dimensional graphics
system [35]. This, however, is not enough and, anyway, is less
easy to come by when starting with a photograph alone. Here,
the play between light extrema, light and shade is key. The no-
tion receives some quantitative support from observations on the
process of painting, Figure ??. The artist started with gray paper
and subsequent analysis of the fifty images taken at two minute
intervals during painting shows that the mean intensity of 80% of
paint marks, added by the artist, are more extreme than the mean
of their immediate surroundings. In other words, the artist built
the portrait by adding ever lighter and darker strokes (indeed it is
difficult to see how else it could be done!). Moreover, a quanti-
tative association between light and dark extrema and objects has
been reported: when asked to outline objects within photographs,
60% of regions that people demarcated manually were associated

7-4



Why art?

with light or dark extrema [31]. These observations support the
contention that control of scale and extrema are important in the
creation of pictures from photographs.

The new algorithm decomposes an image by ordering level-
connected sets in two ways: first by scale (detail) and secondly by
value (extrema of light and shade). It provides the digital artist
with access to a choice of differently scaled detail. Unlike blur-
ring, the system simplifies without distorting edges and it can, in
principle, be used ‘underneath’ other painterly algorithms both to
simplify the image prior to sampling and to provide, perhaps better,
lines for clipping [53].

Selectively removing detail simplifies a photograph and is im-
plicit in existing methods for producing painterly pictures. Systems
for creating pen-and-ink drawings from existing images clearly re-
move both color and spatial detail and simultaneously add artis-
tic detail in the form of pen strokes [74]. In the case of paint-
ing Haeberli samples the image, effecting a simplification. He
then modulates and spreads the color over a larger region using
a brush, an action that also adds technique detail by simulating
the medium and stochastic brush strokes that are modulated by
edge gradients to imply artistic interpretation [29]. By modelling
the flow of water dragging pigments over paper Curtis [25] re-
moves detail from the original photograph by a form of blur and
simultaneously substitutes texture detail that replicates watercolor.
Hertzmann starts by removing detail with large brushes and then
uses finer brushes to selectively refine the picture where the sketch
differs from blurred photograph, a form of multiscale removal of
detail [34]. These methods sub-sample the source image either
before or after smoothing: the standard way to remove detail and
prevent aliasing. In this paper, however, we concentrate on another
way to control the level of detail in a digital image. Scale-space fil-
tering to both remove detail and uncover large scale image maxima
(highlight) and minima (lowlights).

Chiarascuro (bright highlights and dark shadows) and its ma-
nipulation characterizes the work of many artist’s, since the renais-
sance. Hockney [37] draws attention to the way the line used by
Ingres follows the light rather than the form (as evidence of optical
assistance of which he gives many other examples). Figure 7.1(A)
shows an extract from the original drawing of Madame Godinot
1829. (B) Shows the artist’s lines that, Hockney argues, follows
the light. We illustrate the problem by analysing the photograph
shown in (C).
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Figure 7.2: (A) Photograph
and (B) associated edges. (C)
Sieved to remove detail and
(D) fewer edges make a more
sketch-like picture.

Conventional edge detectors (D and E) produce a prominent
line along the back edge of the cuff (F): a boundary that was
ignored by the artist. The problem lies with the local edge filter.
Typically they have a small region-of-support that responds to the
strong edges around the form and so cannot ‘see’ the larger picture
(the Canny filter (D) is more complex but has related problems).
Simplifying the image by blurring, Figure 7.1(G), increases the
region-of-support and does both reveal the expected large scale
highlight running from the cuff into the sleeve but it removes detail.

Thus Gaussian scale-space filters meet two requirements of a
pre-processor for non-photorealistic rendering. As such it is used
to segment images and create pictures where the artist’s eye-gaze
governs the level of detail rendered at different positions in the
image [26]. Whilst pleasing, the results are limited in the range of
styles they can support because such filters introduce significant
geometric distortion reflected in the edges (H) that, whilst graph-
ically interesting, do not form the basis of a sketch: important to
the artist. Here we pursue alternative scale-space filters.

Simplification maintaining scale-space causality
In image processing the process of removing detail from a dig-

ital image emerged from studies on finding salient, edges [55].
The work with Gaussian filters lead to the, theoretically tidy, rep-
resentation of images known as scale-space [39, 89, 50]. This
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important concept is seen as a requirement of image simplification
systems since it guarantees that extrema in the simplified image
are not artifacts of the simplification process itself. Computation
systems that preserve scale-space causality are usually associated
with Gaussian filters [1] and diffusion [65] in which the image forms
the initial conditions for a discretization of the continuous diffu-
sion equation: ∇ · (c∇f) = fs. If the diffusivity is a constant this
becomes the linear diffusion equation, ∇2f = fs which may be
implemented by convolving the image with the Green’s function of
diffusion equation: a Gaussian convolution filter. Of course, care
is needed when this equation is discretized [51] but, if it is done
correctly, a scale-space with discrete space and continuous scale
may be formed1.

Approximations to this Gaussian blur filter are common in
image-editors and graphical rendering systems. The problem with
blurring, when finding salient edges at large scales, is that edges
wander away from the true edge and objects become rounded: a
consequence of convolution, Figure 7.1H. It is better if diffusivity
depends upon contrast, as in anisotropic diffusion, but computa-
tion then becomes lengthy and unwanted small scale detail with
a high enough contrast may nevertheless be preserved. In other
words, as with linear diffusion, there is an interaction between the
intensity and scale of an object.

More recently the multiscale analysis of images has been ex-
plored in the field of mathematical morphology. Two rather differ-
ent approaches to constructing a morphological scale-space have
been suggested. In the first [80, 47] the image is either eroded
or dilated using an elliptic paraboloid. As is often the case in
morphology (and convolution filters) the shape of the structuring
element (window) dominates over structure in the image. That
said however, the brush like ‘texture’ introduced by the structur-
ing element can be useful in digital art and is used in photo-editor
plug-ins (Adobe Photoshop Gallery Effects).

The second approach uses those connected-set alternating se-
quential filters sometimes termed sieves [11]. Sieves [15] appear in
a variety of guises but they have their starting point in connected-
set graph morphology [72, 82, 83] and watersheds [76]. At small
scale they filter out maximally stable extremal points [46] or detail
and at larger scale, entire objects. Figure 7.2(C) confirms that fine
detail is removed and that edges (D) of remaining features are well
preserved. These edges are more sketch-like than those derived

1Or with a discrete scale parameter if preferred.
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directly from the image (B) or from a Gaussian smoothed image
Figure 7.1(H). This, and the more poster-like simplified image pro-
vides a reason to explore further how these scale-space filters can
be used in non-photorealistic rendering.

Methods
We implement the sieve described in [11]. The algorithm first

creates a list of all maxima and minima. These extrema are level
8- (or 4-) connected-sets of pixels that are then sorted by area. A
scale decomposition progresses by merging all extrema of area 1
to the next most extreme neighbouring pixel(s), i.e. all extreme
values are replaced by the value of the next most extreme adjacent
pixel. If the segment remains an extremum it is added to the
appropriate scale extremum list. The decomposition continues by
merging all extrema of scale 2, 3 and so on. Thus, for example,
by scale 100 there are no maxima (white) or minima (black) areas
of less than 100 pixels. We use low-pass, band-pass and high-pass
filters created by combinations of sieving operations.

The image is represented as a graph [81] G = (V, E). The set
of edges E describes the adjacency of the pixels (which are the
vertices V ). A pixel, x, is connected to its eight neighbours. A
region, Cr(G, x), is defined over the graph that encloses the pixel
(vertex) x, Cr(G, x) = {ξ ∈ Cr(G)|x ∈ ξ} where Cr(G) is the
set of connected subsets of G with r elements. Thus Cr(G, x) is
the set of connected subsets of r elements that contain x. For
each integer r ≥ 1 the operators ψr, γr, Mr, N r : ZV → ZV

are defined as ψrf(x) = maxξ∈Cr(G,x) minu∈ξ f(u),, γrf(x) =
minξ∈Cr(G,x) maxu∈ξ f(u), Mr = γrψr, N r = ψrγr. Mr is a
connected-set grayscale opening followed by a closing defined over
a region of size r.

The types of sieve known as M - or N -sieve are formed by
repeated operation of the M or N operators that are also known
as connected alternating sequential filters. An M -sieve of f is the
sequence (f (r))∞r=1 given by

f (1) = M1f, f (r+1) = Mr+1f (r), r ≥ 1 (7.1)

The N -sieve is defined similarly. It has been shown how connected
set openings can be performed in approximately linear time [87]
using a modification to Tarjan’s disjoint set algorithm and a sim-
ilar implementation is used here for the alternating sequence of
openings and closings that forms the sieve.

f (r) is a low-pass filter removing all extrema up to scale r.
f (1) − f (r) is a high-pass filter keeping all extrema from scale 1
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to r and f (s) − f (r) is a band-pass filter for extrema (granules) of
scales between s and r.

The sieve requires two orderings. Level connected-sets are or-
dered by value and extrema are removed in order of scale. Where
a pixel represents a triple, red, blue and green (RGB), there is no
clear way of jointly ordering by value. This is addressed in two
ways. We note that all three channels have a high correlation with
brightness (unlike hue, saturation, value) and so the three colour
planes are sieved independently, the RGB-sieve. The effect of re-
moving detail can be seen by comparing Figure 7.2(A) and (C).
It is evident that (B) has less detail yet, in contrast to alternative
scale-spaces, the edges of large scale objects are preserved. This
is, perhaps, more obvious in the edge images compare Figure 7.2B
and D. The resulting image is both grayer than the original (ex-
trema are removed) and the colours change slightly because they
arise from the signals obtained from colour channels sieved inde-
pendently. There is no link between a pixel and its colour.

A new alternative is the convex ‘colour sieve’ which follows
from a geometric interpretation of the colours of a region and its
neighbours. A convex hull is fitted to points in the region projected
into colour space. All points that lie on the convex hull itself are
extreme (ref. to anonymous paper here) and those enclosed are
not extreme. This provides an ordering - the distance from the
convex hull. This definition is tidy because many typical colour
transformations such as gamma correction and linear transforma-
tions affect the geometry but not the topology of the convex hull
and the extrema inherit the invariance properties.

To simplify the image we merge smaller regions into larger ones
without introducing additional extrema by merging to the neigh-
bour with the closest Euclidean distance. Neighbouring regions
with identical colour distances are further ordered by computing
the difference of their luminance L = (r + g + b)/3 and further
tiebreaks are achieved by ordering by their G,R and B values. The
merging is repeated iteratively until idempotence.
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A B C

D E F

Figure 7.3: ‘(A) Band-pass highlights displayed against a black backround. (B) Band-pass lowlights
displayed against a white backround. (C) Band-pass HSV saturation channel used to select colours,
such as the red roofs, that stand out from backround. (D) Highlights and lowlights incorporated into a
picture. (E) Replacing the chroma of (D) with colours from (C) adds colour highlights (visible in colour
prints, pdf only) that are not visible in the luminance image (F).

Results

We consider how high- and low- lights extracted from the image
using a high-pass sieve can be incorporated into non-photorealistic
image renderings. The grayscale image is band-pass sieved, q =
f (s) − f (r), to find the associated scale highlights, where q > 0,
y = q, else y = 0. Figure 7.3A shows the result. Likewise, lowlights
where q < 0, y = 1 + q, else y = 1, Figure 7.3B. Combined by
painting them onto a mid-tone background, Figure 7.3D, the effect
is similar to chalk and charcoal. Colour highlights are located at
a particular range of scales by sieving the HSV saturation channel
and using this to control the chroma, qhue = f

(s)
hue − f

(r)
hue, where

qhue > t, hue = qsat, sat = qsat, val = 1, else hue = 1, sat = 1,
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val = 1, where t is a threshold that can be adjusted by the user2.
The colour highlights have been painted by replacing the NTSC
chroma values on the canvas with those from the colour highlights,
Figure 7.3E3

Interestingly, as Livingstone [54] points out, by colouring the
canvas with the complement (the two colours sum to gray) of, for
example, the red roofs an optical illusion is created. The effect is
to make the colour appear more interesting that it otherwise might
be for two reasons. Firstly, it challenges the viewer’s vision system
(and monochrome display devices) because the NTSC grayscale
(perceptual luminance) does not change even when the chromi-
nance does: all trace of the colour change vanishes in an NTSC
grayscale print, Figure 7.3F. Exactly how Figure 7.3E appears on
the printed page depends on the printer software. For readers able
to see colour this in colour, Figure 7.3E plays to another colour
illusion. The sharp boundary between the complementary colours
enhances perceived brightness [54].

The brushwork in Figure 7.3A-F places the centre of attention
in the centre of the picture by leaving the periphery free of detail.
This is typical of many paintings. We, therefore, devise an algo-
rithm that automatically selects a central region to be rendered
in more detail than a middleground which, in turn is set against
a backround with low detail. In other words, an algorithm that
creates foreground, Mf , and middleground, Mm masks.

The process is outlined in Figure 7.4B. The idea is to create
masks that exactly follow the boundaries of objects in the image
and which place Mf in the centre and Mm around it. Each mask
is created separately. The image is sieved to a scale, s, quantised
by an amount q and the flat zones labelled. Those zones that
intersect the innermost darker-cross and the pale-cross are then
marked as shown by the white segments, Figure 7.4B. It white
segment has an area A. The part of the pale-cross not covered
by the marked zones has an area A. We then search for a scale,
s, and quantisation q that minimises difference between the areas,
A−A. An exhaustive search of only a few s and q suffices. Typical
masks for Mf and Mm are shown in Figure 7.4B bottom panel and
they have been used to combine images created by RGB-sieving
to three scales, Figure 7.4C. The result is more detail towards the
centre of the image helps draw the viewers attention. The changes

2For digital artists the convention, that user-adjustable thresholds should
be avoided, is not relevant.

3PDF version of the paper.
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Figure 7.4: Photograph. (B) Top, the central cross designating the
region of primary interest together with its border. Bottom, white seg-
ment indicates the region automatically selected to be foreground res-
olution, gray segment at middleground resolution, black at background
resolution. (C) The union of foreground, middleground and background
resolution image segments. Controlling the level of detail helps direct
attention to the interest points in the centre.
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A B

Figure 7.5: ‘(A) Figure 7.4 textured using a photograph of a water-
colour wash and pencil cross-hatching (B).

of scale are subtle since they follow the boundaries of objects in
the image rather than some externally imposed mask.

Notice that many of the areas in Figure 7.4C are flat because
texture, fine detail, has been removed by the sieve. This creates
an opportunity to replace the original texture with another as an
artist might do by using paint or pencil. The image was mixed with
a photograph of a simple watercolour wash (not shown) (multipli-
cation rather than addition), Figure 7.5A, produces a distinctly
watercolour like result. Mixing the same texture with the original
is much less effective (easily achieved in Photoshop) because the
underlying original detail leaves old texture cues intact. A more
extreme example is shown in Figure 7.5B. Here, a photograph of
an area of pencil cross-hatching is mixed with Figure 7.4C. Unlike
Figure 7.5A however, each labelled level set in Figure 7.4C is filled
with a segment of the cross-hatched picked from a random posi-
tion in the texture image. In other words each of the objects is
hatched separately. This is most clearly seen in the large flat areas
top left and bottom right. Superimposing the edges completes the
effect.

Conclusion
The sieve, particulary the convex-hull colour, algorithm is a

useful starting point for non-photorealist rendering of photographs.
It provides the digital artist with access to a choice of images
with differently scaled detail. Unlike blurring, the system simplifies
without distorting edges thus the edges provide a useful starting
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point for creating sketches. The large scale level sets it creates
provide a mechanism for segmenting the image into regions that,
by having different amounts of detail, create a centre of attention.
It is data-driven rather than dependent on a pre-defined geometry.
Band-pass sieves also allow artistically important high-, low- and
bright coloured highlights to be found. Thus in Figure 7.6A the
sieve removes small scale detail and the highlights are now treated
in a way that is redolent of Figure 7.1A with edges that follow the
light Figure 7.6B. We do not attempt to map photographs directly
into art: the artist is still essential. Rather the aim is to provide
the digital artist with tools. Further automatation might include
object recognition to create ways of improving composition and
tools to balance colour composition.

A B

Figure 7.6: (A) Sobel edges after sieving RGB Figure 7.1C to scale
2000: the line carries into the folds. (B) Red line indicates the line.
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8 So what about shape and appearance

Figure 8.1: Distortions of shape and appearance using active appearance models to make the por-
trait more like a: teenager, young adult (equivalent to the original), older adult, more feminine, more
masculine, Modigliani, Botticelli, Mucha. (Try David Perret’s website demonstration http://www.dcs.st-
and.ac.uk/%7Emorph/Transformer/ )

Applying Research into Soft Models

Introducing statistical models of images. The ideas ap-
plied to the attractiveness of flowers (it is the perception by
bees that counts) can be explored using the Matlab toolbox
has just been released in association with a paper in Sci-
ence [85](http://www.cmp.uea.ac.uk/Research/cbg/Documents/
Bangham-Coen-Group/AAMToolbox/AAMToolbox.htm).

Shape models Two dimensional sieves used for art produce a
‘shape free’ decompositions of images. This is its great power,
the decomposition is affine independent. However, shape is im-
portant. The most direct way to analyse and work with shapes is
use statistical shape models. These were introduced in botany for
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analysing plant parts [38, 71] and recently refined for understand-
ing the evolution of flower colour [85]. Separately, it was developed
for analysing medical images [24, 23, 24], speechreading [57], talk-
ing heads [79, 78], and tracking people (Matthews). Perret used
them to study the psychophysical basis of beauty [66].

Figure 8.2: Using the model to
rotate a photograph.

Figure 8.1 shows a statistical model developed by Perret dis-
torting a portrait of Emma. Technically, a statistical analysis of
shape and shape-free appearance is used to create a model. The
images are then generated by the model from different positions in
the shape-appearance space.

Figure 8.2 shows the output from a similar statistical model.
This time created by analysing a set of photographs. To reshape
the original the model was fitted to the original then the result
synthesised by shifting closer to the mean shape, keeping the ap-
pearance the same.

Applications to photography and digital art It would be de-
sirable to apply the technique to photography and creating artistic
pictures. One can imagine ‘retouching’ photographs by slightly en-
larging the eyes, increasing the smile or changing the pose and one
can imagine producing pictures with the ‘flavour’ of old masters (it
will not work well, if only because an inkjet print of an oil painting
is lamentable). The problem is size. There is a practical constraint
on the size of image that can be modelled using the current meth-
ods. There are, however, at least two ways in which this limitation
can be overcome and these form the subject of current research at
UEA.

Figure 8.3: Shape model defi-
nition.

How the models are created in Matlab Our tool-
box for generating statistical shape and appearance mod-
els is available together with sample botanical data
(http://www.cmp.uea.ac.uk/Research/cbg/Documents/Bangham-
Coen-Group/AAMToolbox/AAMToolbox.htm). A set of portraits
were centred in a 400x400 pixels image. A point model was
created by dotting 199 points around the face, hair, shoulders and
hat, (Figure 8.3). Primary points (black ) were at easily recog-
nisable features, the corners of the mouth, nose, etc. Secondary
points (circles) were equally spaced between the primary points
(the pmplace routine helps by automatically sliding the points
long a cubic spline fitted to the points).

The positions of n points for each leaf ([Xj, Yj], j = 1, , n)
were manually selected using ”pmplace” function of the ’Shape
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model toolbox’ that automates the rest of following process. The
points for each portrait are saved in separate files each containing
2n data values. The mean shape is calculated from M portraits,
[X̄j, Ȳj] where j = 1, · · · , N , and the mean X̄j =

∑i=M
i=1 Xi,j/N

and likewise for Y (ignoring the distinction between primary and
secondary points). Differences between shapes associated with
differing species are reflected in the way portraits shapes differ
from the mean. This is captured by subtracting the mean from
each point Di,j = Xi,j − X̄j, Di,n+j = Yi,j − Ȳj , notice that the
X and Y differences are concatenated into a single data vector
forming a column of 2N values. D is a 2n column by M row data
matrix where each row represents a leaf and each column a set of
measurements.

The measurements are correlated, i.e. if one compares a wide
portrait with a narrow one, adjacent points tend to differ in similar
ways. In other words, the measurements do not provide a compact
description of shape. To find a compact linear description of shape
we can construct the smallest set of linearly independent vectors
that span the space of interest. To find independent (orthogo-
nal) measures of shape, the differences for each image, Di, are
represented as a linear combination of orthogonal principal com-
ponents Di = bi,0p0 + bi,1p1 + bi,2p2, + · · · , bi,2n−1p2n−1 where
pl is the first principal component and bi,l is a weight. Thus each
portrait shape, i, has a vector of weights bi. To the extent that
D can be represented linearly in this way (there may be underlying
non-linearities) the weights, bi,j, associated with portraits i are j
independent measures of shape that can substitute for Di,j.

Principal component analysis Principal component analysis
(PCA) is used to find P where P = [p0p1 · · · p2n−1] , such that
bi = P′Di where the superscript tick, (.)′, denotes the transpose
(a capital T is an alternative). The components are ordered to
account for decreasing variance and it is found that a good rep-
resentation of the shape of the portrait, i, can be made using
the weights of just the first three components [bi,0bi,1bi,2]. These
account for most of the variance of shape about the mean shape.
The estimated shape, D̂i, corresponding to just these components,
b̂i = [bi,0, bi,1, bi,2, · · · , bi,2n−1], can be found from Di = Pbi ,
Figure 3. P is called the Point Distribution Model (PDM) and
it is obtained from D in Matlab by finding the covariance matrix,
C = cov(D), the eigenvectors (E), where [E,V] = eig(C), and by
sorting E by decreasing importance according to the eigenvalues,
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V (the covariance of E). Thus, [vals, I]=sort(diag(V), ’descend’)
and the PDM is the sorted eigenvalues, P = E(:, I). To find b
from D in Matlab use b(i, :) = P′ ∗ b(i, :).
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