
GFtbox: a tool for modelling and visualising leaf and petal
development

Richard Kennaway
School of Computing Sciences, University of East Anglia

jrk@cmp.uea.ac.uk

3 March 2009

1 User guide

1.1 What GFtbox is

GFtbox is a Matlab tool for modelling the growth and three-dimensional deformation of biological surfaces such
as leaves and petals (hereafter called “leaves”). The name is short for “Growth factor toolbox”.

Growth is modelled by specifying a distribution of substances called growth factors or morphogens over the surface
of the leaf. The concentrations or concentration gradients of these substances at a point determine the rate at which
the surface grows or bends in the neighbourhood of that point.

1.2 Installation and startup

Locally at UEA and JIC, GFtbox is best installed over SVN. Instructions are on the JIC/UEA wiki.

Other users will receive it as a zip file called Growth Toolbox.zip. This unzips to give a folder called Growth Toolbox.
Place this anywhere convenient.

However you obtain GFtbox, to use it for the first time, run Matlab and go to the Growth Toolbox\growth subdi-
rectory. Give the command GFtbox. The GUI for GFtbox should appear, looking like Figure 1.

GFtbox automatically puts all subdirectories of the Growth Toolbox directory onto the Matlab command path.
You may wish to give the savepath command at the Matlab command prompt in order to keep GFtbox on the
command path, so that you can use its command-line facilities without running the GUI.

This document is Growth Toolbox\docs\gftbox.pdf. It can also be opened by the Open manual command on the
Help menu. The manual is updated less frequently than the program itself.

The GFtbox window contains a control panel on the left and a graphic area on the right, where the leaf will be
drawn. Because there are too many controls to display at once, the Select Tool subpanel contains a set of radio
buttons which select different subpanels to be displayed immediately below.

1.3 Workflow

To create a new mesh from scratch, select Mesh editor in the Select Tool panel, to make the mesh editor panel
visible. You can either make a new leaf from scratch, or load an existing leaf.

To make a new leaf, click the New button. This will create a leaf of one of a predefined set of shapes, selected
from the menu to the right of the buttons.

To load an existing leaf, you can use the Load. . . button near the top of the window. In the resulting dialog, select
a directory containing a previously saved model. However, it is usually more convenient to load projects from the
Projects menu. The Set User Projects Folder... command lets you nominate a folder within which to store all

1

Figure 1: GFtbox on startup

of your projects. All GFtbox projects found within that folder will be made available through the Projects menu,
allowing to to

To save a leaf, use the Save As. . . button. A leaf is always saved as a directory, containing all the files relevant
to that leaf. Such a directory is called a model. To save a leaf again, after having modified it, use the Save button.
This will overwrite the previously saved version. Restart reloads the previously loaded version, discarding any
changes made.

To apply morphogens to a leaf, use the Growth factors panel.

Biological cells can be added to the mesh by the Cells panel.

In some specialised situations, you may have growth tensor data available for a leaf. Such data can be loaded via
the Growth tensors panel. (Warning: this is a little-used feature that nobody has used for a long time. It may not
work.)

The Simulation panel allows some parameters of the simulation to be set.

Having created or loaded a leaf and set its morphogens, biological layer, and simulation options as desired, its
development can be simulated by the controls in the Run panel at the foot. (This panel is always visible.) The
simulation can be run for a specified number of time steps, a single step, or until the area of the leaf reaches a
specified multiple of its initial area. The Stop button will terminate the run (but it may take an iteration or two
before the program notices).

What is plotted in the picture area depends on the settings in the Plot options panel.

The group of buttons at the top left are responsible for loading and saving projects.

1.4 Model structure

A model or project is a folder containing files that all relate to a single leaf model. If the folder is called amodel, then
it will contain a MAT-file called amodel.mat. This is a binary Matlab file which contains the Matlab representation
of a leaf. This is the only file that must exist; the existence of this file, with the same base name as the containing
folder, is what tells GFtbox that this is a project directory.

The following other files and folders may also be present.

2

1. Files with names of the form amodel sNNNdNNN.mat, where the N’s are digits. These are files saved at
stages of the simulation later than the initial state. The suffix NNNdNNN represents a simulation time of
NNN.NNN.

2. A MAT-file called amodel static.mat. This contains those parts of the leaf structure which apply to ev-
ery saved file within the project. This is almost everything except the geometry of the mesh, the current
distribution of growth factors, and the current time.

3. An M-file called amodel.m. This is a text file containing a user-written Matlab function which specifies how
morphogens interact. (See section 4.)

4. The subfolder movies will contain any movies recorded from the program.

5. The subfolder snapshots will contain still pictures capturing moments in development.

The Load. . . menu command invites the user to select a model directory, within which subsequent files will be
saved.

All dialogs for loading or saving files should automatically open in the appropriate model subfolder, if there is a
current model.

2 Creating, loading and saving projects

GFtbox is distributed with a set of ready-made demonstration projects. These can be accessed through the
Projects/Motifs menu. This menu displays all of the projects within the directory Growth Toolbox/Motifs. When-
ever one of these projects is opened, it is automatically saved as a copy into the default directory for your own
projects, to avoid corrupting the originals.

To create a new project, select the Mesh editor button in the Select Tool panel. This makes the Mesh editor
panel visible. From the pull-down menu near the top of the panel, select a mesh type and click the New button.
A new mesh of the required type will be created. Having made a mesh, clicking the Save As... button will let
you save it as a project. In the resulting dialog, create a new directory whose name is the name you want to give
the project. With that directory selected in the dialog, click the OK button. You can open the resulting folder in
Windows Explorer with the menu command Projects/Open Current Project Folder. (This is not implemented
on Linux. I will implement it when I discover (a) how to tell from within Matlab that I’m running on Linux, and
(b) how to open a Linux folder from Matlab.)

If you have saved the new project somewhere within your user projects folder, you should find that it then appears
on the Projects menu.

3 Mesh creation and editing

In the Select Tool panel at the top, select the Mesh editor button. This will make the Mesh editor panel visible.
(Figure 2.) This panel contains all the tools for creating a mesh and modifying its geometry.

3.1 Mesh creation

Mesh creation is performed by the Mesh editor panel, As mentioned in the previous section, a mesh is created
by the New button. The mesh will be of the type selected in the pull-down menu to the right of that button, and
various parameters can be set by the text boxes just below it. The new mesh will be drawn in the picture area.
Below the picture is a text area containing summary details about the mesh, relating to its size and the progress of
the simulation.

These are the available shapes and their parameters:

Circle Radius sets the radius (in arbitrary units). Rings sets the number of rings of triangles that the circle is
divided into. Circum sets the number of vertexes around the circumference of the circle. A value of 0 will

3

Figure 2: The mesh editor panel

give the default, which is 6 times the number of rings. The value must be at least 4, and for best results
should be at least 4 times the number of rings. Inner ring specifies the number of triangles in the innermost
ring. A value of zero will give the default, which is the maximum of 4 or the circumference divided by the
number orf rings. If a value is specified, it must be at least 4.

Semicircle Radius sets the radius (in arbitrary units). Rings sets the number of rings of triangles that the
semicircle is divided into. Unlike Circle, there are no Circum or Inner ring parameters.

Hemisphere The parameters are the same as for a circle.

Lobes A lobe is a semicircle on top of a rectangle. Radius and Refinement specify the semicircle. (Refinement
is the equivalent of Rings.) Height specifies the height of the rectangular part, as a proportion of the diameter
of the semicircle. Lobes specifies the number of lobes. They are joined together in a strip, edge to edge.

Lune (Not implemented yet. A lune is a pointed ellipse.)

Rectangle Width and height are specified by X width and Y width. The number of divisions of the mesh in each
direction are specified by X cells and Y cells.

One element This makes a mesh consisting of a single triangular finite element. This exists primarily for testing
the Finite Element code.

Cylinder This makes a cylinder with a specified radius, height, and number of subdivisions around and vertically.

Cup This makes a cylinder with a hemispherical cap on the lower end. The parameters are as for a cylinder, plus
two extra ones. Base ht specifies the height of the cap as a proportion of the cylinder radius (so 1 gives a
hemisphere and 0 a flat end). Base rg gives the number of rings of triangular finite elements that the cap is
divided into.

Cap This is like Cup, but the end cap is on the top end. The parameters are the same, replacing Base by Top.

Capsule This combines Cup and Cap to give a cylinder with a cap on both ends. It has all the parameters of
Cup and Cap.

4

Snapdragon This makes a flower consisting of a number of lobe-shaped petals joined together into a tube closed
at the foot by a hemispherical cap. The parameters are the same as for Lobes, except that Radius now
refers to the radius of the cylinder, not the radius of the individual lobes. The lobe radius will be half the
circumference of the cylinder, divided by the number of lobes. In addition, it has the same Base ht and
Base rg parameters of Cup.

Instead of creating a mesh of one of these predefined shapes, you can import a mesh defined in an external file.
There are several file formats that may be used to describe a mesh. These formats are created when saving a mesh
to a file, described in section 3.4.

MAT files. These are Matlab binary files containing the current state of the mesh (including morphogens, com-
mand history, everything). Such files are created by saving the mesh to a MAT file.

M files. These are Matlab text files containing Matlab commands that will create or modify a mesh. For more
information on the Matlab commands that create and modify meshes, see sections 13 and 15.

OBJ files. These are text files specifying the coordinates of all the mesh vertexes and the sets of vertexes that are
the triangles of the mesh. Each line of an OBJ file begins with either v or f. All of the former should precede
all of the latter. v is followed by three floating point numbers, the x, y, and z coordinates of a vertex of the
mesh. f is followed by three positive integers, which are the indexes of the three vertexes of a triangle. The
number n references the vertex defined in the nth line beginning with v. The triangles do not have to be
consistently oriented, but the surface as a whole must be orientable. No Klein bottles or Moebius bands!

3.2 Modifying meshes

There are several ways to modify the geometry of a mesh.

The Zero Z button will flatten the mesh by setting the Z coordinate of every node to zero.

The Random button will displace every vertex by a random amount perpendicular to the surface. The amplitude
of the random perturbation is given by the value in the box to the right of the button.

The Bowl Z button will add to the z coordinate an amount proportional to the square of the distance from the
centre, giving a bowl shape. The amplitude is specified in the same way as the the Random Z button.

The Saddle Z button adds a saddle-shaped deformation to the z coordinates. The amplitude is specified as before,
and the number of waves is given by the value in the lower text box.

The Thickness subpanel determines how the thickness of the mesh is modelled. If the Physical checkbox is
unchecked, then the thickness of the mesh will be determined by the Initial and Scaling controls. The thickness
of the mesh will be uniform, and equal to K

√
(A0)(A/A0)P/2, where K is the value of the Initial slider, P is the

value of the Scaling slider, A0 is the initial area of the leaf, and A is its current area. So a scaling value of zero
will cause the leaf to have a constant absolute thickness throughout the simulation, while a scaling of 1 will make
the thickness grow proportionally to the linear size of the leaf.

If Physical is checked, then the initial thickness of the mesh is set by the Initial slider to K
√

(A0), but its subse-
quent growth is determined by the KNOR growth factor.

If one wants a mesh to remain flat and deform only in the xy plane, click the Always flat checkbox. The z
coordinate of every mesh point will be set to zero, and will be forced to remain zero throughout every computation.
If a deformation is applied to a mesh marked as always flat, you will be asked for confirmation that you want to
allow the operation, whereupon it will be allowed to deform in three dimensions..

The Refine mesh button causes a proportion of the edges of the mesh to be split, giving a finer mesh. The slider
and text box below the button specify the proportion of edges to be split.

The Rotate xyz button will rotate the mesh so that what was its x axis now points along the y axis, y along z, and
z along x. Clicking again will rotate x to z, z to y, and y to x. Clicking a third time will rotate the mesh back to
its original orientation. This can be useful if you want to establish a vertical gradient of a morphogen.

The Poisson’s ratio text box specifies the degree to which the mesh can withstand shearing forces. The value
must be greater than 0 and less than 0.5. As it approaches 0.5, the resistance to shearing drops towards zero. The
default value is 0.35, which is typical of many materials. In practice, the behaviour of the simulation is not much

5

affected by the value. Values very close to 0 or 0.5 may result in poor performance, as the equations of elasticity
become ill-conditioned and approach singularities.

It is possible to constrain individual vertexes so that they will not move in either the x, y, or z directions. Select
Fix on the menu just below the panel containing the mesh generation controls, and three checkboxes will appear
alongside, labelled x, y, and z. Use the checkboxes to select the directions in which you want to constrain some
vertexes, and then click on the mesh to select the vertexes you want to constrain. With all the checkboxes checked,
the selected vertexes will be completely immobilised. The vertexes whose contraints are exactly those specified
by the checkboxes are highlighted. Clicking a highlighted vertex will remove all of its constraints; clicking an
unhighlighted vertex will apply the selected constraints.

Clicking the Unfix All button will remove all constraints (but if Always flat is checked, the mesh will still be
constrained to be flat).

To delete parts of the mesh, select Delete element on the same menu, and then click on the mesh. Finite elements
clicked on will be deleted. Be careful with this: there is no undo for this operation, and no way to add elements to
the mesh.

The Flip orientation button does almost nothing visible and can be ignored. It actually inverts the orientation of
every triangle in the mesh, and swaps the A and B sides.

3.3 Saving models

To save a mesh as a new project, click the Save As. . . buttons. The first time you save a mesh, you will be asked
to say where to create a new model folder. The mesh will be saved there as a .mat file.

A model folder holds all of the files associated with a mesh. Initially, this is just the .mat file, but it may also
contain a movies subfolder where recorded movies will be stored, and a snapshorts subfolder for image snapshots.
These subfolders will be automatically created when necessary. There may also be an interaction function (see
section 4) defined in a .m file.

When a mesh has been saved as a model folder, the Save button will save the current stage of the mesh. If no
simulation step have been performed, this overwrites the initial mesh, but otherwise, a new file is saved in the
project folder whose name has a suffix of the form “ sNNNdNNN” added, where the current simulation time is
NNN.NNN. These files, called stage files, are listed in the Stages menu, from where they can be reloaded.

If you have a current prokect open, the Save As. . . button will save its initial state as a new project.

3.4 Saving meshes to files

A mesh can also be saved to a file instead of a model directory, using the various Save. . . commands on the Mesh
menu. They can be saved in a number of different formats.

M files. These are Matlab script commands. For every action in the GUI, there is a corresponding Matlab com-
mand. The history of all the actions the user takes in the GUI is recorded as a series of these Matlab com-
mands. When the mesh is saved as an M-file, the file will contain these commands. For further information
about the Matlab command equivalents of the GUI actions, see sections 13 and 15.

MAT files These are Matlab binary files containing the current state of the mesh.

OBJ files. These are text files which contain a description of the current state of the mesh. Although they are text
files, the format is for practical purposes not human-readable.

FIG files. A FIG-file contains, not the mesh, but a graphical plot of the mesh. A FIG-file can be opened in Matlab,
and the figure zoomed and rotated, but it does not contain the mesh itself, only a 3D graphical representation
of it. Unlike the other formats, a FIG-file cannot be loaded into GFtbox with the Load button.

4 Morphogen distribution and interaction

Morphogens are edited by the Growth factors panel shown in figure 3

6

Figure 3: The Growth factors panel

A morphogen is a substance whose concentration may vary over the mesh. In the finite approximation we make to a
continuous surface, morphogen values are stored at each vertex, and should be imagined to be linearly interpolated
over each triangular element.

A mesh may have any number of morphogens. Seven are predefined, and have specific effects on growth. The user
may add any number of others, and define ways in which morphogens locally interact.

These are the seven standard morphogens and their effects on growth:

KAPAR, KBPAR: These determine the local rate of linear growth on the A and B sides of the mesh in the direction
of the gradient of polariser.

KAPER, KBPER: These determine the local rate of linear growth on the A and B sides of the mesh perpendicular
to the direction of the gradient of polariser.

KNOR: These determine the local rate of linear growth perpendicular to the surface of the mesh.

POLARISER: The gradient of this morphogen determines the directions of maximum and minumum linear
growth as just described.

When the gradient of polariser is zero, growth in all directions parallel to the surface is the average of gpar
and gperp.

STRAINRET: This determines how much of the residual strain is retained from one time step to the next. For
most purposes this should be left at zero.

ARREST: This determines whether biological cells are allowed to split. Where the ARREST morphogen has a
value of 1 or more, no splitting of biological cells is allowed.

The KAPAR, KBPAR, KAPER, and KBPER factors can be specified in an alternative way, accessed by the
Mesh/Change Morphogen Version menu. The A/B menu item corresponds to the growth factors just described.
The K/BEND menu item replaces those factors by these:

7

KPAR: The average growth of the A and B sides of the mesh parallel to the polariser gradient.

KPER: The average growth of the A and B sides of the mesh perpendicular to the polariser gradient.

BENDPAR: Half the difference between the growth on the B side and A side, parallel to the polariser gradient.
Positive means the B side is growing faster.

BENDPER: Similarly, perpendicular to the polariser gradient.

For historical reasons, another standard morphogen appears in K/BEND mode, called NOTUSED. This growth
factor is not used. KNOR is also called THICKNESS instead but has the same effect, and some of the factor
appears in a different order.

Any mesh can be converted back and forth between these two versions. The formulas relating them are:

KPAR = (KAPAR + KBPAR)/2
KPER = (KAPER + KBPER)/2

BENDPAR = (KBPAR− KAPAR)/2
BENDPER = (KBPER− KAPER)/2

KAPAR = KPAR− BENDPAR
KAPER = KPER− BENDPER
KBPAR = KPAR + BENDPAR
KBPER = KPER + BENDPER

When a mesh is created, the standard morphogens are set to have a concentration of zero everywhere. The distri-
bution of each morphogen can be modified through the Growth factors panel.

At the top right of the main control panel there is a pull-down menu of morphogen names. (The menu will be
empty until a mesh has been created.) This selects which of the morphogens the other controls operate on. The
standard morphogens are prefixed by a ∗. In the picture of the mesh, the concentration of the current morphogen
is colour-coded. Zero is white, increasing positive values are blue, green, yellow, orange, and red, and increasing
negative values are violet. If the Auto-range checkbox in the Plot options panel is ticked, the colour scale is fitted
to the range of the current morphogen. Otherwise, the user can specify the maximum and minimum values of the
scale. The maximum absolute value on the colour bar is represented by deep red (if positive) or deep violet (if
negative), and the rest of the colour bar is scaled to fit.

In K/BEND mode, the colour-coding of BENDPAR and BENDPER is different, since these, unlike the other
morphogens can legitimately take either sign. Gren, cyan, and blue represent negative values, and yellow, oragen,
and red positive values.

There are two ways of modifying the level of a morphogen. One is to click on the mesh to add an amount of the
morphogen at a single vertex. The amount added is specified by the Amount slider and text box. Holding down the
shift key while clicking will subtract instead of adding. Note that morphogens can be negative. The other method
is to add a predefined distribution of the morphogen over the whole mesh, by means of the buttons. The amplitude
of the distribution is the Amount value.

Add constant: Add the specified amount to every vertex of the mesh.

Add radial: Add an amount to each vertex, proportional to the square of the distance of that vertex from the
position indicated by the x, y, and z boxes. The maximum amount is the specified amplitude.

Add linear: Add a linear gradient of morphogen. The range will be from zero to the specified amplitude. The
direction of the gradient is given by the Direction text box in degrees. (0 degrees is the positive x axis, 90
degrees is the positive y axis.) The gradient is always in the xy plane. If you want a gradient in the xz plane,
click the Rotate xyz button in the Mesh editor panel to rotate the mesh so that what was the xz plane is
now the xy plane. Then add the gradient you want, then click the Rotate xyz button twice more to restore
the original orientation.

Add to rim: Add the specified amount to every vertex on the rim of the mesh (including vertexes bordering
internal holes).

8

Add random: Add a random amount to every vertex of the mesh. The random amount is uniformly distributed
between zero and the specified amplitude, and is chosen independently for every node of the mesh.

Set zero: Set the morphogen to zero everywhere.

Set zero all: Set all morphogens to zero everywhere, as well as their diffusion and decay constants (see below).

Each morphogen may have the capability of diffusing through the mesh. The diffusion coefficient is specified in
the Diffusion text box. A value of zero means that it does not diffuse. This is the initial default.

Each morphogen may also decay with time, at a rate set by the value in the Decay text box. The result is an
exponential decay to zero. The higher the value, the faster it decays.

The Dilution checkbox causes the current growth factor to behave as a conserved substance: expansion of the mesh
will reduce its concentration in proprtion. The default is off: expansion has no effect on concentration.

The On split radio buttons specify how to determine the new value of a morphogen at the midpoint of an edge
that has been split. Either the average value of the two ends, the minimum, or the maximum can be chosen. The
average value is generally the most physically meaningful, but where a growth factor is being used to define the
identity of vertexes, the minimum may be more suitable.

The Set all zero button sets all growth factors everywhere to zero.

The Use wild type button causes all mutant levels to be ignored.

To cause the value of a morphogen at a vertex to remain fixed at its current value, regardless of diffusion and decay,
control-click the vertex. Control-click the same vertex again to let the value vary. A vertex fixed at a high value
will thus act as a source, and a vertex fixed at zero will act as a sink. A combination of a source, diffusion, and
decay can be used to create a morphogen localised to a region around its source, which remains of fixed size even
while the leaf grows.

To create a new morphogen, click the New button in the morphogens panel. A dialog will appear asking for the
name of the new morphogen. The name of the new morphogen, e.g. foo, will be added to the Displayed m’gen
menu. Its initial value is zero everywhere, with zero diffusion and decay rate.

To delete the currently selected morphogen, click the Delete button. The user will be asked for confirmation. The
built-in morphogens cannot be deleted.

To rename the currently selected morphogen, click the Rename button. The user will be asked for confirmation.
The built-in morphogens cannot be renamed, nor can a morphogen be renamed to have the same name as another
morphogen.

5 The Interaction Function

To specify interactions between morphogens, click the Edit button on the Interaction function panel. An M-file
will be created in the model directory. Its name will be the name of the model. A standard outline of a morphogen
interaction function will be written to the file, which will then be opened in the editor.

Clicking the Edit button later will reopen the file in the editor.

When you add, delete, or rename morphogens, the interaction function will automatically be rewritten, so that
the boilerplate code at the top and bottom will refer to the new set of morphogen names. Any code of your own
which accesses renamed or deleted morphogens will have to be manually edited as necessary. You must save your
changes to disk before doing anything that causes the file to be regenerated, otherwise your changes will be lost.
Besides adding, deleting, and renaming morphogens, the file is also regenerated every time you load or reload the
project, or use the Edit or Rewrite button.

Here is a typical interaction function. We asume there are two user-defined morphogens, called foo and rad.

function m = snapdragon(m)
%m = snapdragon(m)
% Morphogen interaction function.

%%% AUTOMATICALLY GENERATED CODE: DO NOT EDIT.

9

if isempty(m), return; end

growth_i = FindMorphogenIndex(m, ’growth’);
G = m.morphogens(:,growth_i);
polariser_i = FindMorphogenIndex(m, ’polariser’);
P = m.morphogens(:,polariser_i);
anisotropy_i = FindMorphogenIndex(m, ’anisotropy’);
A = m.morphogens(:,anisotropy_i);

curl_i = FindMorphogenIndex(m, ’curl’);
curl = m.morphogens(:,curl_i);
curlpolariser_i = FindMorphogenIndex(m, ’curlpolariser’);
curlpolariser = m.morphogens(:,curlpolariser_i);
curlanisotropy_i = FindMorphogenIndex(m, ’curlanisotropy’);
curlanisotropy = m.morphogens(:,curlanisotropy_i);
arrest_i = FindMorphogenIndex(m, ’arrest’);
arrest = m.morphogens(:,arrest_i);
foo_i = FindMorphogenIndex(m, ’foo’);
foo = m.morphogens(:,foo_i);
rad_i = FindMorphogenIndex(m, ’rad’);
rad = m.morphogens(:,rad_i);

%%% END OF AUTOMATICALLY GENERATED CODE.

%%% YOUR CODE BEGINS HERE.

...

%%% END OF YOUR CODE.

%%% AUTOMATICALLY GENERATED CODE: DO NOT EDIT.
m.morphogens(:,growth_i) = G;
m.morphogens(:,polariser_i) = P;
m.morphogens(:,anisotropy_i) = A;
m.morphogens(:,curl_i) = curl;
m.morphogens(:,curlpolariser_i) = curlpolariser;
m.morphogens(:,curlanisotropy_i) = curlanisotropy;
m.morphogens(:,arrest_i) = arrest;
m.morphogens(:,foo_i) = foo;
m.morphogens(:,rad_i) = rad;

end

All of the above code is automatically generated. To make this function do something useful, you need to add code
in the section marked YOUR CODE BEGINS HERE.

The first line declares a Matlab function called snapdragon. It takes one argument and returns one result. The
argument is a structure containing the current state of the mesh. The result of the function is the new state of the
mesh.

The subsequent lines down to the beginning of your code define one variable for each morphogen, holding the
values of that morhpogen at every node of the mesh.

Your code can then modify the values of these variables.

The final boilerplate section copies the variables back into the appropriate place in the mesh structure.

Here are some examples of what might appear in your code.

1. G(:) = 0;

This will set the growth morphogen to zero everywhere, on every iteration.

2. G = foo_p .* 2;

10

This will set the concentration of the growth morphogen to twice that of the foo morphogen, on every
iteration. This overrides whatever distribution of growth morphogen may have been set through the GUI.

3. G = foo_p .* rad_p;

This will set the concentration of the growth morphogen to the product of those of the foo and bar mor-
phogens.

4. G = G .* 1.1;

This increases the concentration of growth morphogen by 10% on every iteration.

5. if Steps(mesh) < 40
G = G .* 1.1;

end

This gives the same exponential increase of growth morphogen, but stops after 40 steps.

6. if Steps(mesh) > 40
arrest = 1;

end

This will prevent all biological cell division after 40 steps. (ARREST IS NOT YET IMPLEMENTED.)

The interaction function can in principle change the mesh in any way whatsoever: it is not limited to changing the
morphogens. However, one must understand what one is doing before changing any other part of the mesh data
structure.

If the interaction function sets m.stop to 1, then this will cause the simulation to stop after the current iteration.
(The toolbox will automatically then set m.stop back to 0.)

The Enable checkbox turns the interaction function on and off.

If the interaction function causes an error, it will be automatically disabled and the controls on the Interaction
function panel will turn red. Normal operation can be resumed by clicking the Edit button (GFtbox assumes that
you will fix the error) or the Reset button.

6 The notes file

The Interaction function panel also contains a button called Notes. This creates a text file in the project directory
whose name is the model name, and opens it in the editor. In this file you can keep a record for your self of the
work that you do on a model. You can type anything you like into it; GFtbox never does anything with it except
open it when you click the button.

When you save a project as a new project, the notes file is copied across and automatically opened in the editor.

7 Growth tensors

Instead of driving growth by morphogens, it is possible to specify growth tensors directly. This is only supported
for flat meshes.

WARNING: Nobody has used this for a long time, and it may not work.

Growth tensors are imported through the Growth tensors panel shown in figure 4.

A growth tensor describes the way a small region of the mesh (a single Finite Element) is growing at a single point
in time. There are several different ways of representing this numerically, but they all require three numbers. Two
representations are supported.

1. The three numbers are:

• The number of time steps that it would take the region to double its area.

11

Figure 4: The Growth tensors panel

• The ratio of the rate of growth in the fastest growing direction to the rate of growth in the slowest
growing direction.

• The angle of the fastest growing direction from the positive X axis. (A positive angle turns towards the
positive Y axis.)

2. The three numbers are:

• The rate of growth in the fastest growing direction. (E.g. a value of 0.1 would mean a growth of 10%
over some standard time interval.)

• The rate of growth in the slowest growing direction.

• The angle of the fastest growing direction from the positive X axis.

GFtbox attempts to guess from the data which interpretation of the three numbers is more likely.

A mesh with growth tensors can be loaded from an OBJ file. Such a file specifies the locations of all the vertexes,
the triples of vertexes that make the finite element triangles, and for each finite element, a growth tensor.

A new set of growth tensors for the current mesh can be loaded by the Load growth. . . button on the Growth
tensors panel. This loads an OBJ file just like the one loaded by the Load. . . button, but ignores all information
except the growth tensors. For this to work, the topology of the mesh must be identical to that contained in the
OBJ file.

When a new set of growth tensors is loaded, although the mesh geometry in the file is discarded, the total area of
the mesh is calculated. The ratio of that area to the original area of the currently loaded mesh is calculated, and
that value is inserted into the text box beside the Run To. . . button on the Simulation panel.

This allows GFtbox to perform regrowth of ungrowth data, by means of the following steps. We assume that we
are given a series of files which represent the mesh and its growth tensors at successive stages of growth.

1. For convenience, put all of the OBJ files into the meshes directory of a new model.

2. Load the file that represents the first stage (i.e. the earliest stage).

3. Load the growth tensors from the file that represents the second stage.

4. In the Simulation panel, make sure that the checkbox for Use tensors is on, and that for Split edges is off.
Check that the value in the box beside the Run To. . . button is greater than 1. (If it is less than 1, that means
that you are handling the files in the wrong order. Typically, the files are named stage 1.obj, stage 2.obj,
etc., but sometimes stage 1.obj is the earliest stage and sometimes it is the final stage.)

5. Click the Run To. . . button. The mesh should grow until its area has increased by the specified amount.

6. Repeat stages 3 to 5 for each of the remaining OBJ files.

When you are done, you can save the mesh as a script file (use the Save mesh. . . button and select “M files” in
the dialog). Running this script file will rerun the entire process automatically. If you look at the script file with
a text editor, it should be clear how to modify it for other data sets, instead of having to go through the manual
process every time.

12

Figure 5: The Cells panel

8 Biological cells

Biological cells are simulated by adding a layer of cells painted onto the underlying finite element mesh and
growing and moving with it. The biological layer can be created or modified through the Cells panel shown in
figure 5.

The Fill with cells button will completely cover the surface with cells, rendered in shades of dark green, When this
has been done, the Shock cells button will randomly turn a specified proportion of them light green, simulating
the effect of a randomly distributed genetic change, such as the initiation of expression of GFP (green fluorescent
protein). Unshock all cells reverts them all to dark green.

Alternatively, the Scatter cells button will randomly scatter a number of cells over the surface. One cell will be
created in the middle of each randomly selected element of the finite element mesh. These cells are all coloured
red, and the Shock cell button has no effect on them: they are intended to model some randomly chosen set of real
cells, while avoiding the computational load of simulating an entire layer of cells.

The One cell button adds a randomly chosen cell to the current set of cells.

Delete all cells deletes the biological layer.

If splitting of cells during growth is enabled (by a checkbox on on the Simulation panel), then as the biological
cells grow with the mesh, they will divide according to the following rules. A cell splits when it has grown to more
than

√
2 times the average area of the cells when they were initially created. The direction of the new cell wall

depends on both the shape of the cell and the presence of a polarising morphogen.

If there is no polarising gradient, the shape of the cell is estimated by mathematically approximating the cell by an
ellipse (using PCA). The new cell wall is then chosen to be perpendicular to the major axis of the ellipse, and pass
through its centre. A small random perturbation is made to the direction (...WHICH THE USER SHOULD BE ABLE TO

SPECIFY).

If there is a polarising gradient, the new cell wall will be either perpendicular to or parallel to that gradient,
depending on the length of the projection of the cell onto each of those directions. If the cell is longer along
the gradient, the new wall will be perpendicular to the gradient, and vice versa. There is again a small random
perturbation to the direction.

Cell division can be disabled by turning off the Split bio cells checkbox in the Simulation panel.

Cell division can also be enabled or disabled by the arrest morphogen. Where this is 1 or more, cell splitting is
disabled. (THIS IS NOT IMPLEMENTED YET.)

13

Figure 6: The Simulation and Run panels

9 Running a simulation

Once a mesh has been created and morphogens added to it, its development can be simulated, using the controls in
the Run panel. These controls are always visible. Additional parameters of the simulation are accessible through
the Simulation panel. These are shown in figure 6.

The Run for, Run until, Run to, and Step buttons, respectively do a specified number of steps, run to a certain
time, run until the area has expanded by a certain multiple, and do a single step.

The Run panel turns red when the simulation is running.

As a rough guide to the meaning of a single step, if the concentration of growth morphogen is equal to 1 every-
where, then in one time step, the mesh will grow linearly by about 1%.

Run for, Run until and Run yo are interruptible with the Stop button.

Most of the GUI controls can still be used during the simulation, although it may take one or two steps before they
have a visible effect. E.g. enabling or disabling cell splitting, changing the plot options, etc. Operations which are
not allowed during simulation will sound a beep or write a message to the Matlab command window.

Currently, the simulation runs tolerably fast for meshes of a few thousand finite elements and biological cells,
gradually degrading with increasing numbers.

14

10 Simulation options

Several different computations take place during each simuation step. The controls in the Simulation panel allow
some of these to be turned on and off.

Elastic growth, Plastic growth: At most one of these is active at once. These determine whether the effect of
growth on the shape of the leaf is calculated using the equations for a compressible solid or for a compressible
two-dimensional fluid. Elastic growth is generally more realistic. The main difference is that fluids do not
buckle. If both checkboxes are turned off, no growth computations are performed. The default is elastic
growth.

Diffusion: When turned on, this enables the calculation of diffusion and decay, for morphogens having positive
values for either of these.

The default is on.

Retriangulate: This allow certain transformations of the mesh to be made in order to maintain numerical quality
by avoiding long thin triangles.

Split long edges: This determines whether edges of the finite element mesh should be split when they become too
long. The default is on.

Split bent edges: If the finite elements on either side of an edge of the mesh make too great an angle with each
other, enabling this checkbox allows them to be split, so as to better approximate the shape of the underlying
smooth surface in regions where its curvature is increasing. The threshold angle for splitting is set in the
Max bend text box in radians. The default is off, as under some circumstances its behaviour is unstable.

Split bio cells: This determines whether biological cells are allowed to be split when they becone too large. The
default is on.

Use tensors: If on, use externally specified growth tensors instead of morphogens to determine the growth. The
default is off.

Flip edges: When on, this can improve the subdivision of the mesh by detecting when the edge between two finite
elements should be replaced by the edge joining those elements’ opposite corners.. The default is off.

Internal rotation: Rotate the mesh by N radians before computing the Nth oteration, and rotate it back before
displaying it. This helps to smooth out some numerical artefacts.

Negative growth: Allow the rate of growth specified by the growth factors to be negative. Negative growth might
be considered biologically unrealistic.

The other controls in the Simulation panel are:

De-strain: Clicking this button will remove all residual elastic strain from the mesh.

Flat strain: Clicking this button will set the residual elastic strain to what it would be if the unstrained state of the
mesh was flat.

Dissect: Clicking this button will cut the mesh along all its seams.

Explode: Clicking this button will move all the connecte components of the mesh away from each other.

Flatten: Clicking this button will deform every connected component of the mesh until it is flat, while trying to
minimise the distortion.

Freeze: Ths slider and text box set the proportion of computed growth that is not actually applied to the mesh.
The normal value os zero; a value of 1 would prevent the mesh moving at all.

Max FEs: If positive, splitting of finite elements will be disabled when the number of elements reaches this figure.
If zero, there is no limit on the number of FEs.

15

Max bend: This is the threshold angle for splitting the cells on either side of an edge, if Split bent edges is
turned on.

Edge scaling: This specifies how the length threshold for splitting edges increases as a power of the size of the
mesh. Zero means that the threshold does not change, whie 1 means that is scales as the square root of the
area.

Split margin: Mesh quality is better maintained if edges are not split one by one as they reach the threshold
length, but are split in batches. If the value of split margin is m and the current edge length threshold is d,
then no edge will be split unless some edge is above length d×

√
m, and when that happens, every edge will

be split at once, whose length is above d/
√

m). A value of 1.5 is suitable. In a uniformly growing mesh, any
value above 2 will tend to split nothing until all of the edges have doubled in length, then split all of them at
once.

Min. pol. grad.: Where the magnitude of the polariser gradient is below this value, growth is instead directed by
the gradient which existed the last time it was above this value. If the gradient has never been above the
threshold, growth is unpolarised. The areal growth rate is the same as it would be if there was an effective
gradient, but the growth is isotropic.

When polariser gradient arrows are plotted, where the magnitude is above the threshold the arrows are drawn
in dark blue. Where it is below, the “frozen-in” gradient is drawn in red.

Tol. diff.: Sets the tolerance for solving the diffusion equations. Default is 0.00001.

Tol. elast.: Sets the tolerance for solving the elasticity equations. Default is 0.001.

Time limit: Sets the maximum number of iterations allowed in the cgs solver.

11 Display of the mesh

The scrollbars on the picture vary the direction of the viewpoint.

Just to the left of the picture is the Plot options panel. The settings determine what information is plotted.

The three pull-down menus above the Plot options panel and the checkboxes next to them choose what quantity
is to be represented by the colour of the mesh.

Plot current factor: The value of the current morphogen.

Plot output value: The quantity specified by the two menus just below the checkbox is plotted. The upper menu
specifies a tensor quantity, and the lower menu specifies which attribute of that tensor to plot.

If both checkboxes are off, no quantity is plotted and the mesh is drawn in white.

The tensor quantities are:

Actual growth The amount of growth occurring in the last time step.

Actual bend The amount of bending occurring in the last time step.

Residual growth The difference between the amount of growth specified by the growth factors and the actual
growth in the last time step.

Residual bend The difference between the amount of bend specified by the growth factors and the actual bend
in the last time step.

Rotation The rotational velocity of each element.

The tensor properties are:

Total The total of the three principal components of the tensor.

16

Areal The total of the two principal components of the tensor corresponding to the two principal axes most nearly
parallel to the surface.

Major The larger of the two principal components most nearly parallel to the surface.

Minor The smaller of the two principal components most nearly parallel to the surface.

Parallel The principal component most nearly parallel to the polariser gradient.

Perpendicular The principal component most nearly perpendicular to the polariser gradient and parallel to the
surface.

Normal The principal component most nearly perpendicular to the surface.

Tensor values are defined per finite element, while growth factor values are defined per vertex and interpolated
across each finite element. Thus tensor value appear as a flat colour on each FE, while growth factors apear as
more continuous colour fields.

The checkboxes in the Plot options panel select various other things to plot.

Canvas Plot the finite elements, colour-coded to represent the value of the property selected in the pull-down
menu described above.

FE edges Draw the edges that separate the finite elements.

Polariser gradient Draw an arrow in each FE to show the direction of the polarisation gradient. FEs in which
there is no gradient have no arrow drawn.

Tensor axes If a tensor quantity is being plotted, draw its axes in each FE.

Cells Draw the biological cells.

Mutant level If a growth factor is being plotted, and it has a mutation level, draw the mutated level (the default).
If this is off, the unmutated level is drawn.

Some less frequently used options are on the Plot menu.

Black/White Background Set the background colour of the picture area.

Show/Hide Legend Show or hide the large text at the top of the picture.

Show/Hide Thickness Draw the mesh as a surface of finite or zero thickness.

Show/Hide Seams Highlight the seam edges in red.

Show/Hide Axes Show or hide the axes.

Show/Hide Displacements Draw an arrow at each vertex to indicate its displacement during the previous time
step. The relative lengths of the arrows are accurate, but the absolute lengths are scaled to fit the scale of the
picture.

Show/Hide Normals Draw the surface normal to each finite element.

Turn Light On/Off Turn a light on or off, to enhance the appearance of the surface.

Set Legend... Specify additional text to draw at the top of the picture.

Decor The A/B radio buttons determine which side of the mesh some of the “decorations” are drawn: the polariser
gradient arrows and the FE normals. Biological cells are always drawn on both sides.

When there are very many FEs, the decorations can be difficult to see if they are drawn in every one. The
Sparsity value can be used to draw these decorations larger, and in fewer FEs. No FE will be decorated if
any other FE has a decoration within a distance equal to the sparsity value times the maximum diameter of
the mesh along any of the axes.

17

Auto axis range If this checkbox is on, then the axis range is automatically scaled to fill the picture. If off, the
specified values are used for the axis bounds.

Monochrome If checked, then a monochrome colour scale of a user-specified colour will be used to represent
plotte values, instead of the default rainbow style.

Auto color range If on, then plotting a morphogen, scale the colours so as to go from blue=0 to red=the maxi-
mum value. If off, the color bar spans the user-specified range.

Pan, Zoom, Rot, RU: When clicked, these allow the mouse to be used to change the picture viewpoint accord-
ingly: panning, zooming, rotating arbitrarily, and rotating while holding the camera up vector aligned with
the vertical.

Clip This allows clipping by morphogen value. Clicking the Mgen button brings up a dialog in which you can
select any set of growth factors, together with a criterion for clipping. The part of the mesh that will be
visible will be the set of vertexes where either all or any of the selected factors is either below or above a
user-specified threshold.

Clipping plane The Az, El, and D boxes specify the direction and distance of a clipping plane. The clipping
plane and clipping by morphogen value can be used together.

12 Movies and snapshots

To start recording a movie, click the Record movie. . . button. If the Auto-name checkbox is on, a name for the
movie will be generated automatically, otherwise th user is asked to choose a name. The movie will begin with an
image of the current state of the mesh, as displayed on screen, and an image will be added after every simulation
step. To close the movie, click the same button again (its name will have changed to Stop movie).

To capture a single image, click the Take snapshot button. The Auto-name setting applies in the same way to
snapshot.

Movies and snapshots are just two-dimensional images. They contain none of the structure of the mesh and show
whatever the picture area showed at the time, including the legend.

13 Scripting and non-interactive use

Most of the GUI controls are equivalent to Matlab commands. Each of these Matlab commands can be executed at
the command prompt, without running GFtbox. Most of the available commands are equivalent to GUI operations.

GFtbox maintains a history of the GUI operations as a Matlab script, which can be saved to a file or written to the
Matlab command window. When a script file is loaded (by the Load. . . button), the commands in it are executed.

A script file can be executed at the Matlab prompt without running GFtbox. If it does not ever draw the mesh, it
can be run even on a machine without graphics, such as a remote cluster.

Every command has a name beginning “leaf ”. A command may take a number of required arguments, identified
by their position in the argument list, followed by a number of optional arguments identified by keyword. The
optional arguments can be given in any order, and usually default values will be assumed for optional arguments
not specified.

If a command modifies an existing canvas, the current canvas is always the first required argument.

The result of every command is the new canvas. If a command which creates a new canvas fails (for example,
because of invalid arguments) then it returns the empty structure. If a command which modifies an existing canvas
fails, it returns the old canvas unchanged.

If you edit a script file by hand, you can put in any other Matlab code you like. However, if the script file is to
be read and executed by GFtbox, every line of the script must be a self-contained Matlab command — commands
cannot be split over multiple lines. (This is a limitation of the implementation: GFtbox reads and executes script
files one line at a time, in order to be able to interrupt execution if required after any command.)

18

A script file to be processed by GFtbox must also use the variable “m” to store the mesh, because GFtbox expects
to find the mesh there when the script has finished.

Script files intended only for execution at the Matlab command prompt can contain completely arbitrary Matlab
code.

14 Forthcoming

14.1 New features

1. There should be a command window for typing in Matlab commands that can operate on the current mesh.

2. When deleting elements from the mesh, it should be possible to undo changes.

14.2 Existing problems to be fixed

1. This manual is not up to date.

2. The various view controls do not always maintain their effect the next time the mesh is redrawn.

3. Gravity is not modelled.

4. Running on a stereo display is currently being implemented.

19

15 Reference to all leaf commands

This section of the manual reproduces the help text from all of the script commands. The help text is also available
at the Matlab command prompt by typing help commandname.

15.1 leaf add mgen

m = leaf_add_mgen(m, mgen_name, ...)
Add a new morphogen to m with the given name. If there is already a
morphogen with that name, this command is ignored. Any number of names
can be given at once.

Equivalent GUI operation: the "New" button on the "Morphogens" panel.
A dialog will appear in which the user chooses a name for the new
morphogen.

See also:
LEAF_DELETE_MGEN, LEAF_RENAME_MGEN

15.2 leaf add userdata

m = leaf_add_userdata(m, ...)
Add fields to the userdata of m. The arguments should be alternately a
field name and a field value. Existing fields of those names in
m.userdata will be left unchanged.

See also: LEAF_SET_USERDATA, LEAF_DELETE_USERDATA.

Equivalent GUI operation: none.

15.3 leaf addbioregion

m = leaf_addbioregion(m, cells)
Add the specified finite element patches to the region within which
biological cells will be simulated, or remove them if they are already
included. The patches are identified by their number, which is not
easily ascertained by the user. This command is primarily intended to
be generated by the GUI when the user clicks to select a patch.
Arguments:
1: A list of the patches to add to the region.

Equivalent GUI operation: clicking on the mesh when "3rd layer" is
selected in the "Mouse mode" pull-down menu.

15.4 leaf addpicture

m = leaf_addpicture(m, ...)
Create a new picture window to plot the mesh in. This is primarily
intended for plotting the mesh in multiple windows simultaneously.

Options:
’figure’ A handle to a window. The previous contents of the

window will be erased.
’position’ An array [x y w h] specifying the position and size of the

20

window relative to the bottom left corner of the screen.
x is horizontal from the left, y is vertical from the
bottom, w is the width and h is the height, all in pixels.

’relpos’ A similar array, but this time measured relative to the
bottom left corner of the previous picture, if there is
one, otherwise the bottom left corner of the screen.

Only one of position or relpos may be supplied.
w and h can be omitted from relpos, in which case the size defaults
to the size of the existing window, if any, otherwise the default
size for a new window.
x and y can be omitted from position, in which case the new window
is centred on the screen.
If both position and relpos are omitted, a window of default size
and position is created.
’vergence’ A number in degrees, default 0. The azimuth of the

figure is offset by this amount, so that the eye seeing
the figure sees it as if the eye was turned towards the
centre line by this angle.

’eye’ ’l’ or ’r’, to specify which eye this is for.
If no eye is specified, vergence defaults to zero. If
vergence is specified, an eye must also be specified.
’properties’ A structure containing any other attribute of the

figure that should be set.

15.5 leaf addseam

m = leaf_addseam(m, ...)
Marks some edges of m as being or not being seams, according to
criteria given in the options. Unlike all other toolbox commands, the
options to this command are processed sequentially and the same option
may occur multiple times in the list.

Options:
’init’ Either ’all’ or ’none’. Sets either all of the edges,

or none of them, to be seam edges.
’edges’ An array of edge indexes. All of these edges will

become seam edges.
’nonedges’ An array of edge indexes. All of these edges will

become non-seam edges.
’nodes’ An array of node indexes. All edges joining two edges

in this set will become seam edges.
’nonnodes’ An array of node indexes. All edges touching any node

in this set will become non-seam edges.
’morphogen’ A cell array of two elements. The first is a

morphogen name or index. The second is a string
specifying how the value of the morphogen will be used
as a criterion for deciding whether an edge should
become a seam. It consists of three parts. It begins
with one of ’min’, ’mid’, or ’max’. This is followed
by one of ’<’, ’<=’, ’>=’, or ’>’. This is followed by
a number. Examples: ’min>0.5’ means that an edge
becomes a seam if the minimum value of the morphogen at
either end is greater than 0.5. ’max’ would take the
maximum of the ends, and ’mid’ would take the average.

21

15.6 leaf allowmutant

m = leaf_allowmutant(m, enable)
Enable or disable the whole mutation feature.

Arguments:
enable: 1 to allow mutation, 0 to disable mutation.

15.7 leaf alwaysflat

m = leaf_alwaysflat(m, flat)
If FLAT is 1, force the mesh to never bend out of the XY plane. The
mesh will be flattened if it is not already flat, by setting the Z
coordinate of every node to zero.
If FLAT is 0, allow the mesh to bend out of the XY plane. If the mesh
happens to be flat, it will not actually bend unless it is perturbed
out of the XY plane, e.g. by adding a random Z displacement with the
leaf_perturbz command.
Example:

m = leaf_alwaysflat(m, 1);

Equivalent GUI operation: clicking the "Always flat" checkbox on the
"Mesh editor" panel.

15.8 leaf archive

m = leaf_archive(m)
Create an archive of the current state of the project.
Archived states are kept in a subfolder ARCHIVE of the current project.
Each archived state is in a project folder whose name is the name of
the current project, with ’_Ann’ appended, where nn is a number 1
greater than the maximum number that has already been used, or 1 for
the first created archive.

Arguments: none.

Equivalent GUI operation: clicking the "Archive" button.

INCOMPLETE -- DO NOT USE.

15.9 leaf attachpicture

m = leaf_attachpicture(varargin)
NOT SUPPORTED. INCOMPLETE. NON-OPERATIONAL.
Load a picture from a file. Create a rectangular mesh of the same
proportions.
If no filename is given for the picture, a dialog will be opened to
choose one.

Equivalent GUI operation: none.

15.10 leaf bowlz

m = leaf_bowlz(m, ...)

22

Add a bowl-shaped perturbation to the z coordinate of every point of
the finite element mesh. The z displacement will be proportional to
the square of the distance from the origin of coordinates.
Arguments:

A number, being the maximum displacement. The displacement will be
scaled so that the farthest point from the origin is displaced by
this amount. The default is 1.

Examples:
m = leaf_bowlz(m, 2);

Equivalent GUI operation: the "Bowl Z" button on the "Mesh editor"
panel. The amount of bowl deformation is specified by the value in the
upper of the two text boxes to the right of the button.

15.11 leaf circle

m = leaf_circle(m, ...)
Create a new circular mesh.

Arguments:
M is either empty or an existing mesh. If it is empty, then an
entirely new mesh is created, with the default set of morphogens
If M is an existing mesh, then its geometry is replaced by the new
mesh. It retains the same set of morphogens (all set to zero
everywhere on the new mesh), interaction function, and all other
properties not depending on the specific geometry of the mesh.

Options:
’radius’ The radius of the circle. Default 1.
’rings’ The number of circular rings of triangles to divide

it into. Default 4.
’circumpts’ The number of vertexes around the circumference.

The default is rings*6. It must be at least 4, and
for best results should be at least rings*4. As a
special case, if zero is specified, rings*6 is
chosen.

’innerpts’ The number of vertexes around the innermost ring of
points. Default is max(floor(circum/nrings), 3).

’dealign’ Dealign the vertexes on adjacent rings. Default
false. Only applies when circumpts is nonzero.

’hemisphere’ Create a hemisphere instead of a flat circle. The
argument is the height of the hemisphere as a
proportion of the radius. Default is 0, i.e. make
a flat circle. It can be negative.

Example:
m = leaf_circle([], ’radius’, 2, ’rings’, 4);

Equivalent GUI operation: selecting "Circle" or "Hemisphere" on the
pulldown menu on the "Mesh editor" panel, and clicking the "Generate
mesh" button.

15.12 leaf colourA

m = leaf_colourA(m)

23

Assign colours to all the cells in the bio-A layer. If there is no
bio-A layer, the command is ignored.

Optional arguments:
colors: The colour of the cells, as a pair of RGB values. The

first is for the unshocked state and the second for the
shocked state. If this is not specified, the command does
nothing.

colorvariation: The amount of variation in the colour of the new
cells. Each component of the colour value will be randomly
chosen within this ratio of the value set by the ’color’
argument. That is, a value of 0.1 will set each component
to between 0.9 and 1.1 times the corresponding component of
the specified colour. (The variation is actually done in
HSV rather than RGB space, but the difference is slight.)
The default is zero.

15.13 leaf cylinder

m = leaf_cylinder(m, ...)
Create a new surface, in the form of an open-ended cylinder whose axis
is the Z axis, centred on the origin.

Arguments:
M is either empty or an existing mesh. If it is empty, then an
entirely new mesh is created, with the default set of morphogens
If M is an existing mesh, then its geometry is replaced by the new
mesh. It retains the same set of morphogens (all set to zero
everywhere on the new mesh), interaction function, and all other
properties not depending on the specific geometry of the mesh.

Options:
’radius’ The radius of the cylinder. Default 2.
’height’ The height of the cylinder. Default 2.
’circumdivs’ The number of divisions around the cylinder.

Default 12.
’heightdivs’ The number of divisions along the axis of the

cylinder. Default 4.
Example:

m = leaf_cylinder([], ’radius’, 2, ’height’, 2, ’circumdivs’, 12,
’heightdivs’, 4);

See also: LEAF_CIRCLE, LEAF_LUNE, LEAF_ONECELL,
LEAF_RECTANGLE, LEAF_SEMICIRCLE.

Equivalent GUI operation: selecting "Cylinder" on the pulldown menu on
the "Mesh editor" panel, and clicking the "Generate mesh" button. The
radius, height, number of divisions around, and number of divisions
vertically are given by the values of the text boxes named "radius",
"y width", "x divs", and "y divs" respectively.

15.14 leaf delete mgen

m = leaf_delete_mgen(m, mgen_name, ...)
Delete from m the morphogen that has the given name. If there is no
such morphogen, or if the name is one of the reserved morphogen names,

24

this command is ignored. Any number of names can be given at once.

Equivalent GUI operation: clicking the "Delete" button in the
"Morphogens" panel, which deletes the currely selected morphogen.

See also:
LEAF_ADD_MGEN, LEAF_RENAME_MGEN

15.15 leaf delete userdata

m = leaf_delete_userdata(m, ...)
Delete specified fields from the userdata of m. The arguments should
be strings. If no strings are given, all the user data is deleted.

If a named field does not exist, it is ignored.

See also: LEAF_SET_USERDATA, LEAF_ADD_USERDATA.

Equivalent GUI operation: none.

15.16 leaf deletecells

m = leaf_deletecells(m)
Delete all the biological cells in the third layer. The region within
which biological cells may be created is left unchanged.

Example:
m = leaf_deletecells(m);

Equivalent GUI operation: none.

15.17 leaf deletepatch

m = leaf_deletepatch(m, cells)
Delete the specified finite element patches from the leaf.
Arguments:
1: A list of the cells to add to the region.

Equivalent GUI operation: clicking on the mesh when the "Delete canvas"
item is selected in the "Mouse mode" pulldown menu.

15.18 leaf deletepatch from morphogen level

ind=find(wound>0.5);
listcells=[];
for i=1:size(m.tricellvxs,1)

if length(intersect(m.tricellvxs(i,:),ind’))==3
listcells(end+1)=i;

end
end

15.19 leaf deletesecondlayer

m = leaf_deletesecondlayer(m)

25

Delete the first biological layer.

Equivalent GUI operation: clicking the "Delete all cells" button in the
"Bio 1" panel.

15.20 leaf deletestages

m = leaf_deletestages(m)
Delete all the stage files for m, and optionally, the stage times.
Deleted files are gone at once, not put in the wastebasket.

Options:
’times’ Boolean. If true, also delete the stored stage times from

the mesh.

Equivalent GUI operation: the "Delete All Stages..." and "Delete Stages
and Times" commands on the Stages menu.

15.21 leaf deletethirdlayer

m = leaf_deletethirdlayer(m)
Delete the second biological layer.

Equivalent GUI operation: clicking the "Delete all cells" button in the
"Bio 2" panel.

15.22 leaf destrain

m = leaf_destrain(m)
Remove all residual strain from the mesh.

Equivalent GUI operation: clicking the "De-strain" button on the
"Simulation" panel.

15.23 leaf dissect

m = leaf_dissect(m)
Cut m along all of its seam edges.

Arguments and options: none.

[m,ok] = leaf_dointeraction(m, enable)
Execute the interaction function once, without doing any simulation
steps. This will happen even if the do_interaction property of the mesh
is set to false,
If there is no interaction function, this has no effect.
If there is an interaction function and it throws an exception, OK will
be returned as FALSE.

Arguments:
enable: 1 if the interaction function should be enabled for all
subsequent simulation steps, 0 if its state of enablement should be
left unchanged (the default). If the i.f. throws an error then it
will be disabled for subsequent steps regardless of the setting of

26

this argument.

m = leaf_edit_interaction(m, ...)
Open the interaction function in the Matlab editor.
If there is no interaction function, create one.

Options:
’force’ If true, the interaction function will be opened even

if the model m is marked read-only. If false (the
default) a warning will be given and the function not
opened.

Extra results:
ok is true if the function was opened, false if for any reason it
was not.

15.24 leaf enablelegend

m = leaf_enablelegend(m, enable)
Cause the legend to be drawn or not drawn.
When not drawn, the graphic item that holds the legend text will be
made invisible.

Arguments:
1. A boolean specifying whether to draw the legend (default true).

15.25 leaf enablemutations

m = leaf_enablemutations(m, enable)
Enable or disable mutations.

Arguments:
enable: True to enable all mutations, false to disable them.

Examples:
m = leaf_enablemutant(m, 0);

% Disable all mutations, i.e. revert to wild-type.

15.26 leaf explode

m = leaf_explode(m, amount)
Separate the connected components of m.

Arguments:
amount: Each component of m is moved so as to increase the distance
of its centroid from the centroid of m by a relative amount AMOUNT.
Thus AMOUNT==0 gives no movement and AMOUNT < 0 will draw the
pieces inwards.

15.27 leaf fix mgen

m = leaf_fix_mgen(m, morphogen, ...)
Make the current value of a specified morphogen at a specified vertex
or set of vertexes be fixed or changeable.

27

Arguments:
1: The name or index of a morphogen.

Options:
’vertex’ Indexes of the vertexes. The default is the empty list

(i.e. do nothing).
’fix’ 1 or true if the value is to be made fixed, 0 or false if

it is to be made changeable. The default is true.

Equivalent GUI operation: control-clicking or right-clicking on the
canvas when the Morphogens panel is selected.

15.28 leaf fix vertex

m = leaf_fix_vertex(m, ...)
Constrain vertexes of the mesh so that they are only free to move along
certain axes.

Options:
’vertex’ The vertexes to be constrained. If the empty list is

supplied, the constraint is applied to all vertexes.
’dfs’ The degrees of freedom to be constrained. This is a

string made of the letters ’x’, ’y’, and ’z’. This
defaults to ’xyz’, i.e. fix the vertexes completely.

Each degree of freedom not in dfs will be made unconstrained for all of
the given vertexes. Vertexes not in the list of vertexes will have
their constraints left unchanged.

It is only possible to constrain vertexes in directions parallel to the
axes.

Equivalent GUI operation: clicking on the mesh while the Mesh editor
panel is selected and ’Fix’ is selected in the Fix/Delete menu. The
’x’, ’y’, and ’z’ checkboxes specify which degrees of freedom to
constrain or unconstrain.

15.29 leaf flatstrain

m = leaf_flatstrain(m)
Set the residual strains in the mesh to what they would be if the whole
mesh were flat.

Arguments: none.

Options: none.

Equivalent GUI operation: clicking the "Flat strain" button in the
"Simulation" panel.

[m,ok] = leaf_flatten(m)
Flatten each of the connected components of m.

Options:
interactive: If true (default is false), then the flattening will

28

be carried out interactively. The user can skip the
flattening of components that appear not to be well
flattenable, or cancel the whole operation.

15.30 leaf flattenX

m = leaf_flatten(m)
Flatten each of the connected components of m.

Options:
ratio: This is the proportion of the flattening displacements to

apply. The default value is 1, i.e. complete flattening.

15.31 leaf fliporientation

m = leaf_fliporientation(m)
Interchange the two surfaces of the mesh.

15.32 leaf gyrate

m = leaf_gyrate(m, ...)
Spin and/or tilt the mesh about the Z axis, leaving it at the end in
exactly the same orientation as when it started. If a movie is currently being
recorded, the animation will be appended to the movie. The current view
is assumed to have already been written to the movie.

Options:
’frames’: The number of frames to be added. Default 32.
’spin’: The number of complete rotations about the Z axis.

Default 1.
’tilt’: The number of cycles of tilting up, down, and back to

the initial elevation. Default 1.
’tiltangle’: The angle to tilt up and down to, in degrees from

the horizontal. Default 89.99.

15.33 leaf hemisphere

m = leaf_hemisphere(m, ...)
Create a new hemispherical mesh. The mesh is oriented so that the cell
normals point outwards.

Arguments:
M is either empty or an existing mesh. If it is empty, then an
entirely new mesh is created, with the default set of morphogens
If M is an existing mesh, then its geometry is replaced by the new
mesh. It retains the same set of morphogens (all set to zero
everywhere on the new mesh), interaction function, and all other
properties not depending on the specific geometry of the mesh.

Options:
’radius’ The radius of the hemisphere. Default 1.
’divisions’ The number of divisions around the circumference.

Default 20.
’rings’ The number of circular rings of triangles to divide

29

it into. Default is floor(divisions/6).
Example:

m = leaf_hemisphere([], ’radius’, 2, ’divisions’, 15, ’rings’, 3);

Equivalent GUI operation: selecting "Hemisphere" on the pulldown menu on
the "Mesh editor" panel, and clicking the "Generate mesh" button. The
radius and the number of rings are specified in the text boxes with
those labels.

15.34 leaf icosahedron

m = leaf_icosahedron(m, ...)
Create a new icosahedral mesh.

Arguments:
M is either empty or an existing mesh. If it is empty, then an
entirely new mesh is created, with the default set of morphogens
If M is an existing mesh, then its geometry is replaced by the new
mesh. It retains the same set of morphogens (all set to zero
everywhere on the new mesh), interaction function, and all other
properties not depending on the specific geometry of the mesh.

Options:
’radius’ The radius of the icosahedron. Default 1.

Example:
m = leaf_circle([], ’radius’, 2, ’rings’, 4);

Equivalent GUI operation: selecting "Circle" or "Hemisphere" on the
pulldown menu on the "Mesh editor" panel, and clicking the "Generate
mesh" button.

[m,ok] = leaf_iterate(m, numsteps, ...)
Run the given number of iterations of the growth process.
In each iteration, the following things happen:

* Strains are set up in the leaf according to the effects of the
morphogens at each point causing the material to grow.

* The elasticity problem is solved to produce a new shape for the
leaf.

* Morphogens which have a nonzero diffusion coefficient are allowed
to diffuse through the mesh.

* If dilution by growth is enabled, the amount of every morphogen
is diluted at each point according to how much that part of the
leaf grew.

* A user-supplied routine is invoked to model local interactions
between the morphogens.

* The layer of biological cells is updated.

* If requested by the options, the mesh is plotted after each
iteration.

Results:
ok: True if there was no problem (e.g. invalid arguments, a user
interrupt, or an error in the interaction function). False if there
was.

Arguments:

30

1: The number of iterations to perform. If this is zero, the
computation will continue indefinitely or until terminated by the
’until’ or ’targetarea’ options.

Options:
’until’ Run the simulation until this time has been reached or

exceeded. A value of zero disables this option.
’targetarea’ Run the simulation until the area of the canvas is at

least this number times the initial area. A value of
zero disables this option.

’plot’ An integer n. The mesh will be plotted after every n
iterations. 0 means do not plot the mesh at all; -1 means plot
the mesh only after all the iterations have been completed.
The default value is 1.

Example:
m = leaf_iterate(m, 20, ’plot’, 4);

Equivalent GUI operation: clicking one of the following buttons in the
"Simulation" panel: "Run" (do a specified number of steps), "Step" (do
one step), or "Run to..." (run until the area has increased by a
specified factor).

15.35 leaf load

m = leaf_load(m, filename, ...)
Load a leaf from a file. If no filename is given, a dialog will be
opened to choose one.
The expected format depends on the extension of the filename:

.MAT The leaf is contained in the file as a Matlab object called
m.

.M The file contains Matlab commands to create or modify a
leaf. These commands will be executed.

.OBJ Contains only nodes and triangles, in OBJ format. All
other properties of the mesh will be set to their default
values.

If no filename is given, a dialog will be opened to choose one.
If the filename consists of just an extension (including the initial
"."), a dialog will be opened showing only files with that extension.

All of these formats can be generated by leaf_save.
In the case of .MAT and .OBJ files, the existing leaf will be
discarded. A .M file will discard the current leaf only if it contains
a command to create a new leaf; otherwise, it will apply its commands
to the current leaf.

Equivalent GUI operation: the "Load..." button.

15.36 leaf loadgrowth

m = leaf_loadgrowth(m, filename)
Load growth data for the leaf from an OBJ or MAT file. If no filename
is given, one will be asked for.

This assumes the mesh is in growth/anisotropy mode.

31

Equivalent GUI operation: the "Load Growth..." button on the
"Morphogens" panel.

[m,ok] = leaf_loadmodel(m, modelname, projectdir, ...)
Load a model. If no model name is given or the model name is empty, a
dialog will be opened to choose one. The model will be looked for in
projectdir, if given, otherwise the project directory of m, if any,
otherwise the current directory. The argument m can be empty; in fact,
this will be the usual case.

If the model is successfully loaded, the new model is returned in M and
the (optional) return value OK is set to TRUE. Otherwise M is left
unchanged and OK is set to FALSE.

Options:
rewrite: Normally, when a model is loaded, its interaction

function (if there is one) is read, parsed, and
rewritten. This is because it may have been created with
an older version of GFtbox. Specifying the rewrite
option as false prevents this from being done. This may
be necessary when running several simulations
concurrently on a parallel machine, all using the same
project. Note that when rewrite is true (the default),
the interaction function will not actually be rewritten
until the first time it is called, or any morphogen is
added, deleted, or renamed.

copyname, copydir:
If either of these is given, a new copy of the project
will be made and saved with the specified project name
and parent folder. The original project folder will be
unmodified. If one of these options is given, the other
can be omitted or set to the empty string, in which
case it defaults to the original project name or project
folder respectively. If the value of copyname is ’?’,
then the user will be prompted to select or create a
project folder. In this case, copydir will be the folder
at which the select-folder dialog starts. If both
options are empty, this is equivalent to omitting both of
them (the default). If copydir and copyname are the same
as modelname and projectdir, a warning will be given, and
the copy options ignored.

If for any reason the model cannot be saved, a warning will be output,
the loaded model will be discarded, and the empty list returned.

Equivalent GUI operation: the "Load model..." button, or the items on
the Projects menu. The items on the Motifs menu use copyname and
copydir to force the "motif" projects to be opened as copies in the
user’s default project directory.

Examples:
m = leaf_loadmodel([], ’flower7’, ’C:\MyProjects\flowers’, ...

’copyname’, ’flower8’, ...
’copydir’, ’C:\MyProjects\flowers’);

This loads a model from the folder ’C:\MyProjects\flowers\flower7’,
and saves it into a new project folder ’C:\MyProjects\flowers\flower8’.
Since the value of copydir is the same as the projectdir argument,

32

the copydir option could have been omitted.

15.37 leaf lobes

m = leaf_lobes(m, ...)
Create a new mesh in the form of one or more lobes joined together in a
row. A lobe is a semicircle on top of a rectangle.

Arguments:
M is either empty or an existing mesh. If it is empty, then an
entirely new mesh is created, with the default set of morphogens
If M is an existing mesh, then its geometry is replaced by the new
mesh. It retains the same set of morphogens (all set to zero
everywhere on the new mesh), interaction function, and all other
properties not depending on the specific geometry of the mesh.

Options:
’radius’ The radius of the semicircle. Default 1.
’rings’ The number of circular rings of triangles to divide

it into. Default 4.
’height’ The height of the rectangle, as a multiple of the

semicircle’s diameter. Default 0.7.
’strips’ The number of strips of triangles to divide the

rectangular part into. If 0 (the default), this will
be calculated from the height so as to make the
triangles similar in size to those in the lobes.

’lobes’ The number of lobes. The default is 1.
’base’ Half the number of divisions along the base of a

lobe. Defaults to rings.
’cylinder’ The series of lobes is to behave as if wrapped

round a cylinder and the two ends stitched
together. This is implemented by constraining the
nodes on the outer edges in such a way that the
outer edges remain parallel to the y axis.

Example:
m = leaf_lobes(’radius’, 2, ’rings’, 4, ’lobes’, 3, ’base’, 2);

See also: LEAF_CIRCLE, LEAF_CYLINDER, LEAF_LUNE, LEAF_ONECELL,
LEAF_RECTANGLE.

Equivalent GUI operation: selecting "Lobes" in the pulldown menu in the
"Mesh editor" panel and clicking the "Generate mesh" button.

15.38 leaf locate vertex

m = leaf_locate_vertex(m, ...)
Ensure that certain degrees of freedom of a single node remain
constant. This is ensured by translating the mesh so as to restore the
values of the specified coordinates, after each iteration.

Options:
’vertex’ The vertex to be held stationary. If the empty list is

supplied, no vertex will be fixed and dfs is ignored.
’dfs’ The degrees of freedom to be held stationary. This is a

string made of the letters ’x’, ’y’, and ’z’. This

33

defaults to ’xyz’, i.e. fix the vertex completely.
Each degree of freedom not in dfs will be unconstrained.

It is only possible to fix a vertex in directions parallel to the
axes.

Equivalent GUI operation: clicking on the mesh while the Mesh editor
panel is selected and ’Locate’ is selected in the Fix/Delete menu. The
’x’, ’y’, and ’z’ checkboxes specify which degrees of freedom to
constrain or unconstrain.

15.39 leaf lune

m = leaf_lune(m, ...)
NOT IMPLEMENTED.
Create a new mesh in the shape of a stereotypical leaf, oval with
pointed ends.

Arguments:
M is either empty or an existing mesh. If it is empty, then an
entirely new mesh is created, with the default set of morphogens
If M is an existing mesh, then its geometry is replaced by the new
mesh. It retains the same set of morphogens (all set to zero
everywhere on the new mesh), interaction function, and all other
properties not depending on the specific geometry of the mesh.

Options:
’xwidth’ The diameter in the X dimension. Default 3.
’ywidth’ The diameter in the Y dimension. Default 2.
’xdivs’ The number of segments to divide it into along the

X axis. Default 8.
Example:

m = leaf_lune([], ’xwidth’, 3, ’ywidth’, 2, ’xdivs’, 8);

See also: LEAF_CIRCLE, LEAF_CYLINDER, LEAF_ONECELL,
LEAF_RECTANGLE, LEAF_SEMICIRCLE, LEAF_LOBES.

Equivalent GUI operation: selecting "Leaf" in the pulldown menu in the
"Mesh editor" panel and clicking the "Generate mesh" button.

15.40 leaf makecells

m = leaf_makecells(m, numcells, numcvt)
Create a layer of biological cells. If there is already a biological

layer, it is discarded.
Arguments:
1: The total number of biological cells to create.
2: The number of iterations of the CVT transformation to apply

to the cells. The more iterations, the more nearly the
cells will be of equal sizes, and with walls tending to
meet at 120 degrees. The default is 10.

Examples:
m = leaf_makecells(m, 100);

Equivalent GUI operation: clicking the "Make cells" button.

34

15.41 leaf makesecondlayer

m = leaf_makesecondlayer(m, ...)
Make a new Bio-A layer, either adding to or discarding any existing one.

Options:
mode: One of the following strings:

’full’: cover the entire surface with a continuous sheet of
cells. There will be one cell per FE cell plus one cell
per FE vertex.

’grid’: cover the entire surface with a continuous sheet of
square cells.

’voronoi’: cover the entire surface with a continuous sheet of
cells. The ’numcells’ option specifies how many. This is
only valid for flat or nearly flat meshes.

’single’: make a single second layer cell in a random position.
’few’: make a specified number of second layer cells, each in a

different randomly chosen FEM cell.
’each’: make one second layer cell within each FEM cell.

abssize: Not valid for mode=full. In all other cases, this is a real
number, being the diameter of a single cell.

relsize: Not valid for mode=full. In all other cases, this is a real
number, being the diameter of a single cell as a proportion
of the average diameter of the current mesh.

relinitarea: Not valid for mode=full. In all other cases, this is a real
number, being the area of a single cell as a proportion
of the initial area of the mesh.

relFEsize: Not valid for mode=full. In all other cases, this is a real
number, being the diameter of a single cell as a proportion
of the average diameter of a typical FE cell in the current mesh.

numcells: Valid only for mode=’voronoi’ or mode=’few’. Am integer
specifying the number of cells to create.

fraccells: Valid only for mode=’each’. A real number between 0
and 1, it specifies the proportion of FEs that should
have a bio cell placed in them.

add: Boolean. If true, existing cells are retained and new
cells are added to them. If false, any existing biological
layer is discarded. If ’mode’ is ’full’ or ’voronoi’, the
old layer is always discarded, ignoring the ’add’ argument.

colors: The colour of the new cells, as an RGB value.
colorvariation: The amount of variation in the colour of the new

cells. Each component of the colour value will be randomly
chosen within this ratio of the value set by the ’color’
argument. That is, a value of 0.1 will set each component
to between 0.9 and 1.1 times the corresponding component of
the specified colour. (The variation is actually done in
HSV rather than RGB space, but the difference is slight.)

probperFE: For ’each’ mode, a probability for each FE that a cell
will be created there. Any value less than 0 is equivalent
to 0, and any value greater than 1 is equivalent to 1.

probpervx: Like probperFE, but the values are given per vertex.
Alternatively, the value can be a morphogen name or index,
in which case the values of that morphogen at each vertex
will be used.

The options ’fraccells’, ’probperFE’, and ’probpervx’ are mutually
exclusive. If ’probperFE’ or ’probpervx’ is given, the
probabilities will also be weighted by the areas of the finite

35

elements. Thus a uniform probability field will give a uniform
density of biological cells, regardless of the sizes of the finite
elements.

At most one of ABSSIZE, RELSIZE, RELINITAREA, and RELFESIZE should be given.

Equivalent GUI operation: clicking the "Make cells" button on the Bio-A
panel. This is equivalent to m = leaf_makesecondlayer(m,’mode’,’full’).

15.42 leaf mgen absorption

m = leaf_mgen_absorption(m, morphogen, absorption)
Set the rate at which a specified morphogen is absorbed.
Arguments:
1: The name or index of a morphogen.
2: The rate of absorption of the morphogen. A value of 1 means that

the morphogens decays by 1% every 0.01 seconds.
Examples:

m = leaf_mgen_absorption(m, ’growth’, 0.5);

Equivalent GUI operation: setting the value in the "Absorption"
text box in the "Morphogens" panel.

15.43 leaf mgen conductivity

m = leaf_mgen_conductivity(m, morphogen, conductivity)
Set the rate at which a specified morphogen diffuses through the leaf.
Arguments:
1: The name or index of a morphogen.
2: The conductivity of the surface to the morphogen. This is in
dimensionless units: try a value of 1.
Examples:

m = leaf_mgen_conductivity(m, ’growth’, 0.5);

Equivalent GUI operation: setting the value in the "Diffusion"
text box in the "Morphogens" panel.

15.44 leaf mgen const

m = leaf_mgen_const(m, morphogen, amount)
Add a constant amount to the value of a specified morphogen everywhere.
Arguments:
1: The name or index of a morphogen. Currently, if

the name is provided, it must be one of the following:
’growth’, ’polariser’, ’anisotropy’,
’bend’, ’bendpolariser’, ’bendanisotropy’.

These are respectively equivalent to the indexes 1 to 6 (which
are the only valid indexes). There is no default for this option.

2: The amount of morphogen to add to every node. A value
of 1 will give moderate growth or bend, and a maximum growth or
bend anisotropy. A constant field of growth or bend polarizer
has no effect: polarising morphogen has an effect only through
its gradient.

Examples:
m = leaf_mgen_const(m, ’growth’, 1);

36

m = leaf_mgen_const(m, 3, 0.8);
See also: LEAF_MGEN_RADIAL.

Equivalent GUI operation: clicking the "Add const" button in the
"Morphogens" panel. The amount is specified by the "Amount slider and
test item.

15.45 leaf mgen dilution

m = leaf_mgen_dilution(m, morphogen, enable)
Set the rate at which a specified morphogen is absorbed.
Arguments:
1: The name or index of a morphogen.
2: A boolean specifying whether to enable dilution by growth
Examples:

m = leaf_mgen_dilution(m, ’growth’, 1);

Equivalent GUI operation: setting the "Dilution" checkbox in the
"Morphogens" panel.

15.46 leaf mgen edge

m = leaf_mgen_edge(m, morphogen, amount, ...)
Set the value of a specified morphogen to a given amount everywhere on
the edge of the leaf.
Arguments:
1: The name or index of a morphogen.
2: The maximum amount of morphogen to add to every node.
Examples:

m = leaf_mgen_edge(m, ’growth’, 1);
See also: leaf_mgen_const.

Equivalent GUI operation: clicking the "Add edge" button in the
"Morphogens" panel. The amount is specified by the "Amount slider and
test item.

15.47 leaf mgen linear

m = leaf_mgen_linear(m, morphogen, amount, ...)
Set the value of a specified morphogen to a linear gradient.
Arguments:
1: The name or index of a morphogen.
2: The maximum amount of morphogen to add to every node.
Options:

’direction’ Either a single number (the angle in degrees
between the gradient vector and the X axis, the
gradient vector lying in the XY plane; or a triple
of numbers, being a vector in the direction of the
gradient. The length of the vector does not
matter. Default is a gradient parallel to the
positive X axis.

Examples:
m = leaf_mgen_linear(m, ’growth’, 1, ’direction’, 0);

See also: leaf_mgen_const.

37

Equivalent GUI operation: clicking the "Add linear" button in the
"Morphogens" panel. The amount is specified by the "Amount slider and
test item. Direction is specified in degrees by the "Direction" text
box.

15.48 leaf mgen modulate

m = leaf_mgen_modulate(m, ...)
Set the switch and mutant levels of a morphogen.

Options:
morphogen: The name or index of a morphogen. If omitted, the

properties are set for every morphogen.
switch, mutant: Value by which the morphogen is multiplied to give its

effective level.

If either switch or mutant is omitted its current value is
left unchanged.

The effective value of a morphogen is the product of the actual
morphogen amount, the switch value, and the mutant value. So
mutant and switch have the same effect; the difference is
primarily in how they are intended to be used. Mutant value is
settable in the Morphopgens panel of the GUI and is intended to have a
constant value for each morphogen throughout a run. There is also a
checkbox in the GUI to turn all mutations on and off. Switch value has
no GUI interface, and is intended to be changed in the interaction
function. The switch values are always effective.

The initial values for switch and mutant in a newly created leaf are 1.

Examples:
m = leaf_mgen_modulate(m, ’morphogen’, ’div’, ...

’switch’, 0.2, ...
’mutant’, 0.5);

Sets the switch level of ’div’ morphogen to 0.2 and the mutant
level to 0.5. The effective level will then be 0.1 times the
actual morphogen.

15.49 leaf mgen radial

m = leaf_mgen_radial(m, morphogen, amount, ...)
Add to the value of a specified morphogen an amount depending on the
distance from an origin point.
Arguments:
1: The name or index of a morphogen.
2: The maximum amount of morphogen to add to every node.
Options:

’x’, ’y’, ’z’ The X, Y, and Z coordinates of the centre of the
distribution, relative to the centre of the mesh.
Default is (0,0,0).

Examples:
m = leaf_mgen_radial(m, ’growth’, 1, ’x’, 0, ’y’, 0, ’z’, 0);
m = leaf_mgen_radial(m, ’g_anisotropy’, 0.8);

See also: leaf_mgen_const.

38

Equivalent GUI operation: clicking the "Add radial" button in the
"Morphogens" panel. The amount is specified by the "Amount slider and
test item. x, y, and z are specified in the text boxes of those names.

15.50 leaf mgen random

m = leaf_mgen_random(m, morphogen, amount, ...)
Add a random amount of a specified morphogen at each mesh point.
Arguments:
1: The name or index of a morphogen.
2: The maximum amount of morphogen to add to every node.
Options:

’smooth’ An integer specifying the smoothness of the
distribution. 0 means no smoothing: the value at
each node is independent of each of its neighbours.
Greater values imply more smoothness. Default is
2.

Examples:
m = leaf_mgen_random(m, ’growth’, 1);
m = leaf_mgen_random(m, ’g_anisotropy’, 0.8);

See also: LEAF_MGEN_CONST.

Equivalent GUI operation: clicking the "Add random" button in the
"Morphogens" panel. The amount is specified by the "Amount slider and
test item.

15.51 leaf mgen reset

m = leaf_mgen_reset(m)
Set the value of all morphogens and all conductivities to zero
everywhere.
Example:

m = leaf_mgen_reset(m);

Equivalent GUI operation: clicking the "Set zero all" button in the
"Morphogens" panel.

15.52 leaf mgen scale

m = leaf_mgen_scale(m, morphogen, scalefactor)
Scale the value of a given morphogen by a given amount.
Arguments:
1: The name or index of a morphogen.
2: The scale factor.
Examples:

m = leaf_mgen_scale(m, ’bpar’, -1);
See also: leaf_mgen_const.

Equivalent GUI operation: clicking the "Invert" button in the
"Morphogens" panel will scale the current morphogen by -1. There is not
yet a user interface for a general scale factor.

39

15.53 leaf mgen zero

m = leaf_mgen_zero(m, morphogen)
Set the value of a specified morphogen to zero everywhere.
Arguments:
1: The name or index of a morphogen.
Examples:

m = leaf_mgen_zero(m, ’growth’);
See also: LEAF_MGEN_CONST.

Equivalent GUI operation: clicking the "Set zero" button in the
"Morphogens" panel.

15.54 leaf mgeninterpolation

m = leaf_mgeninterpolation(m, ...)
Set the interpolation mode of morphogens of m. When an edge of the
mesh is split, this determines how the morphogen values at the new
vertex are determined from the values at either end of the edge.

Options:

’morphogen’ This can be a morphogen name or index, a cell array of
morphogen names and indexes, or a vector of indexes.

’interpolation’ Either ’min’, ’max’, or ’average’. If ’min’, the new
values are the minimum of the old values, if ’max’ the
maximum, and if ’average’ the average.

GUI equivalent: the radio buttons in the "On split" subpanel of the
"Morphogens" panel. These set the interpolation mode for the current
morphogen. As of the version of 2008 Sep 03, new meshes are created
with the interpolation mode for all morphogens set to ’min’.
Previously the default mode was ’average’.

Example:
m = leaf_mgeninterpolation(m, ...

’morphogen’, 1:size(m.morphogens,2), ...
’interpolation’, ’average’);

This sets the interpolation mode for every morphogen to ’average’.

disp(sprintf(’%d %f’,i,dt(i)))

ind=find(pm_l>0.95*max(pm_l(:)));

[m,tube_l]=leaf_morphogen_switch(m,...
’StartTime’,OnsetOfTubeGrowth,’EndTime’,FinishTubeGrowth,...
’Morphogen_l’,’tube’,’RealTime’,realtime);

Alternatively, these can be specified
[m,basemid_l]=leaf_morphogen_switch(m,...

’StartTime’,OnsetOfTubeGrowth,’EndTime’,FinishTubeGrowth,...
’Morphogen_l’,’basemid’,’RealTime’,realtime,...
’OnValue’,1.0,’OffValue’,0.0);

15.55 leaf movie

m = leaf_movie(m, ...)

40

Start or stop recording a movie.
Any movie currently being recorded will be closed.
If the first optional argument is 0, no new movie is started.
Otherwise, the arguments may contain the following option-value pairs:
FILENAME The name of the movie file to be opened. If this is not

given, and m.globalProps.autonamemovie is true, then a name
will be generated automatically, guaranteed to be different
from the name of any existing movie file. Otherwise, a file
selection dialog is opened.

MODE (NOT IMPLEMENTED) This is one of ’screen’, ’file’, or ’fig’.
’screen’ will capture the movie frames from the figure

as drawn on the screen, using avifile().
’file’ will use print() to save the

figure to a file, then load the file and add it to the
movie. This allows arbitrarily high resolution movies to
be made, not limited to the size drawn on the screen.

’fig’ will save each frame as a MATLAB .fig file
and will not generate a movie file. The figures can later
be assembled into a movie file by running the command
fig2movie. The reason for this option is that when
running in an environment with no graphics, I have been
unable to find a way of creating images from figures.

FPS, COMPRESSION, QUALITY, KEYFRAME, COLORMAP, VIDEONAME: These options
are passed directly to the Matlab function AVIFILE. LEAF_MOVIE provides
defaults for some of these:

FPS 15
COMPRESSION ’Cinepak’
QUALITY 100
KEYFRAME 5

Equivalent GUI operation: clicking the "Record movie..." button.

See also AVIFILE.

15.56 leaf onecell

m = leaf_onecell(m, ...)
Create a new leaf consisting of a single triangular cell.

Arguments:
M is either empty or an existing mesh. If it is empty, then an
entirely new mesh is created, with the default set of morphogens
If M is an existing mesh, then its geometry is replaced by the new
mesh. It retains the same set of morphogens (all set to zero
everywhere on the new mesh), interaction function, and all other
properties not depending on the specific geometry of the mesh.

Options:
’xwidth’ The diameter in the X dimension. Default 1.
’ywidth’ The diameter in the Y dimension. Default 1.

Example:
m = leaf_onecell([], ’xwidth’, 1, ’ywidth’, 1);

See also: LEAF_CIRCLE, LEAF_CYLINDER, LEAF_LUNE,
LEAF_RECTANGLE, LEAF_SEMICIRCLE.

Equivalent GUI operation: selecting "One cell" in the pulldown menu in

41

the "Mesh editor" panel and clicking the "Generate mesh" button.

15.57 leaf paintpatch

m = leaf_paintpatch(m, cells, morphogen, amount)
Apply the given amount of the given morphogen to every vertex of each
of the cells. The cells are identified numerically; the numbers are
not user-accessible. This command is therefore not easily used
manually; it is generated when the user clicks on a cell in the GUI.
Arguments:
1: A list of the cells to apply the morphogen to.
2: The morphogen name or index.
3: The amount of morphogen to apply.

Equivalent GUI operation: clicking on every vertex of the cell to be
painted, with the "Current mgen" item selected in the "Mouse mode" menu.
The morphogen to apply is specified in the "Displayed m’gen" menu in
the "Morphogens" panel.

15.58 leaf paintvertex

m = leaf_paintvertex(m, morphogen, ...)
Apply the given amount of the given morphogen to all of the given
vertexes. The vertexes are identified numerically; the numbers are
not user-accessible. This command is therefore not easily used
manually; it is generated when the user clicks on a vertex in the GUI.

Arguments:
1: The morphogen name or index.

Options:
’vertex’ The vertexes to apply morphogen to.

’amount’ The amount of morphogen to apply. This can be either a
single value to be applied to every specified vertex,
or a list of values of the same length as the list of
vertexes, to be applied to them respectively.

’mode’ Either ’set’ or ’add’. ’set sets the vertex to the
given value, ’add’ adds the given value to the current
value.

Equivalent GUI operation: clicking on the mesh when the "Morphogens"
panel is selected. This always operates in ’add’ mode. The morphogen
to apply is specified in the "Displayed m’gen" menu in the "Morphogens"
panel. Shift-clicking or middle-clicking will subtract the morphogen
instead of adding it.

15.59 leaf perturbz

m = leaf_perturbz(m, ...)
Add a random perturbation to the Z coordinate of every node.
Arguments:

A number z, the amplitude of the random displacement. The
displacements will be randomly chosen from the interval -z/2 ...
z/2.

Example:

42

m = leaf_perturbz(m, 0.5)

Equivalent GUI operation: the "Random Z" button on the "Mesh editor"
panel. The amount of random deformation is specified by the value in
the upper of the two text boxes to the right of the button.

15.60 leaf plot

m = leaf_plot(m, ...)
Plot the leaf.
There are many options:
figure The figure to plot in. By default, the current

figure.
plotquantity String. This determines what sort of quantity is

to be plotted.
’morphogen’: plot a morphogen. (The default.)
’specifiedgrowth’: the quantity of growth specified
by the morphogens.
’specifiedbend’: the quantity of bending specified
by the morphogens.
’actualgrowth’, ’actualbend’: the actual amount of
growth or bend in the last timestep.
’residualgrowth’, ’residualbend’: the amount of
growth or bend in the last timestep that was
specified but which did not happen. The difference
between specified and actual.
’strain’ the magnitude of the residual strain

morphogen String or number: the name or index of a morphogen
to be plotted. The default is 1.

drawedges Integer, determines which edges of the finite
element cells to draw. 0 = draw no edges, 1 = draw
only edges on the edge of the leaf, 2 = draw all
edges.

drawgradients Boolean. Draw gradient vectors for the growth
polarising morphogen.

drawcmap Boolean. Specifies whether to draw a colour bar at
the foot of the plot, to show the mapping between
colours and values.

cmap Color map. Specifies how to map values to colours.
This should be an array suitable for passing to
Matlab’s COLORMAP function. Default:

For morphogens, minimum value = blue, maximum =
red, with intermediate values going round
the hue space.

For labels, yellow for unlabelled, blue for
labelled.

For stress and strain:
white 0%
blue 10%
green 20%
yellow 30%
red 40%
purple 90%
black 100% and above

crange 1x2 element array, specifying the range of values
which is mapped to the colour range specified by

43

cmap. This value will be supplied to Matlab’s
CRANGE function. The default is the range of the
data, min(data)..0 or 0..max(data), whichever is
narrowest and contains all the data.

plottensors Boolean. Display the growth tensors based on
morphogens 1 to 3 (growth, polarisation, and
anisotropy).
Default 0.

numbering Boolean. If true, draw the number of each finite
element cell. Default 0.

axisRange Range of axes. This should be a 1x6 array
[XLO,XHI,YLO,YHI,ZLO,ZHI] suitable for passing to
Matlab’s AXIS function. The default is chosen to
ensure the entire leaf lies within the range.

axisVisible Boolean: specifies whether to draw the axes.
Default true.

alpha Real number: transparency of the mesh. (0=invisible,
1=opaque.) Default 0.8 (slightly transparent).

autoScale Boolean, default 1. If 1, axisRange will be
ignored and the current value used.

leaf_plot stores all of the plotting options in the mesh, so that a
subsequent call to leaf_plot with only the mesh as an argument will plot
the same thing.

Equivalent GUI operation: none. The leaf is plotted automatically.
Various options may be set in the "Plot options" panel, and the scroll
bars on the picture change the orientation.

15.61 leaf plotoptions

leaf_plot(m, ...)
Set default plotting options.
See LEAF_PLOT for details.

Equivalent GUI operation: plotting options may be set in the "Plot
options" panel, and the scroll bars on the picture change the
orientation.

m = leaf_recomputestages(m, ...)
Recompute a set of stages of the project, starting from the current
state of m. If this is after any of the stages specified, those stages
will not be recomputed.

Options:
’stages’ A list of the stages to be recomputed as an array of

numerical times. The actual times of the saved stages
will be the closest possible to those specified, given
the starting time and the time step. If this option is
omitted, it will default to the set of stage times
currently stored in m, which can be set by
leaf_requeststages.

See also: leaf_requeststages

44

15.62 leaf record mesh frame

15.63 leaf rectangle

m = leaf_rectangle(m, varargin)
Create a new rectangular mesh.

Arguments:
M is either empty or an existing mesh. If it is empty, then an
entirely new mesh is created, with the default set of morphogens
If M is an existing mesh, then its geometry is replaced by the new
mesh. It retains the same set of morphogens (all set to zero
everywhere on the new mesh), interaction function, and all other
properties not depending on the specific geometry of the mesh.

Options:
’xwidth’ The width of the rectangle in the X dimension. Default 2.
’ywidth’ The width of the rectangle in the Y dimension. Default 2.
’xdivs’ The number of finite element cells along the X dimension.

Default 8.
’ydivs’ The number of finite element cells along the Y dimension.

Default 8.
’base’ The number of divisions along the side with minimum Y

value. The default is xdivs.
Example:

m = leaf_rectangle([], ’xwidth’, 2, ’ywidth’, 2, ’xdivs’, 8,
’ydivs’, 8, ’base’, 5)

See also: LEAF_CIRCLE, LEAF_CYLINDER, LEAF_LEAF, LEAF_ONECELL,
LEAF_SEMICIRCLE.

Equivalent GUI operation: selecting "Rectangle" in the pulldown menu in
the "Mesh editor" panel and clicking the "Generate mesh" button.

15.64 leaf refineFEM

m = leaf_refineFEM(m, amount)
AMOUNT is between 0 and 1. Split that proportion of the edges of the
finite element mesh, in random order.
Example:

m = leaf_refineFEM(m, 0.3);

Equivalent GUI operation: clicking the "Refine mesh" button in the
"Mesh editor" panel. The scroll bar and text box set the proportion of
edges to be split.

15.65 leaf reload

m = leaf_reload(m, stage, varargin)
Reload a leaf from the MAT, OBJ, or PTL file it was last loaded from,
discarding all changes made since then. If there was no such previous
file, the mesh is left unchanged.

Arguments:
stage: If 0 or more, the indicated stage of the mesh, provided

there is a saved state from that stage. If ’reload’, the

45

stage that the mesh was loaded from or was last saved to,
whichever is later. If ’restart’, the initial stage of the
mesh. If the indicated stage does not exist a warning is
given and the mesh is left unchanged. The default is
’reload’.

Options:
rewrite: Normally, when a model is loaded, its interaction

function (if there is one) is read, parsed, and
rewritten. This is because it may have been created with
an older version of GFtbox. Specifying the rewrite
option as false prevents this from being done. This may
be necessary when running several simulations
concurrently on a parallel machine, all using the same
project.

Equivalent GUI operations: The "Restart" button is equivalent to
m = leaf_reload(m, ’restart’);

The "Reload" button is equivalent to
m = leaf_reload(m, ’reload’);

or
m = leaf_reload(m);

The items on the "Stages" menu are equivalent to
m = leaf_reload(m, s);

for each valid s. s should be passed as a string. For example, if
the Stages menu has a menu item called ’Time 315.25’, that stage
can be loaded with

m = leaf_reload(m, ’315.25’);

15.66 leaf rename mgen

m = leaf_rename_mgen(m, oldMgenName, newMgenName, ...)
Rename one or more morphogens. Any number of old name/new name pairs
can be given. The standard morphogens cannot be renamed, and no
morphogen can be renamed to an existing name.

Equivalent GUI operation: clicking the "Rename" button in the
"Morphogens" panel.

See also:
LEAF_ADD_MGEN, LEAF_DELETE_MGEN

m = leaf_requeststages(m, ...)
Add a set of stage times to the mesh. None of these will be computed,
but a subsequent call to leaf_recomputestages with no explicit stages
will compute them.

Options:
’stages’ A list of numerical stage times. These do not have to

be sorted and may contain duplicates. The list will be
sorted and have duplicates removed anyway.

’names’ A cell array of names in 1-1 correspondence with the
list of stage times. These names will appear along
with the stage times on the Stages menu. They default
to empty strings.

’mode’ If ’replace’, the list will replace any stage times

46

stored in m. If ’add’ (the default), they will be
combined with those present. If ’names’ is not
supplied or is the empty cell array, existing names
will be retained.

GUI equivalent: Stages/RequestMore Stages... menu item. This does not
support the ’names’ or ’mode’ options and always operates in ’add’ mode.

15.67 leaf rescale

m = leaf_rescale(m, ...)
Rescale a mesh in space and/or time.

Arguments:

M is either empty or an existing mesh. If it is empty, then an
entirely new mesh is created, with the default set of morphogens
If M is an existing mesh, then its geometry is replaced by the new
mesh. It retains the same set of morphogens (all set to zero
everywhere on the new mesh), interaction function, and all other
properties not depending on the specific geometry of the mesh.

Options:
’spaceunitname’ The name of the new unit of distance.
’spaceunitvalue’ The number of old units that the new unit is

equal to.
’timeunitname’ The name of the new unit of time.
’timeunitvalue’ The number of old units that the new unit is

equal to.
If either spaceunitname or timeunitname is omitted or empty, no
change will be made to that unit.

Example:
Convert a leaf scaled in microns to millimetres, and from days to
hours:

m = leaf_rescale(m, ’spaceunitname’, ’mm’, ...
’spaceunitvalue’, 1000, ...
’timeunitname’, ’hour’, ...
’timeunitvalue’, 1/24);

Equivalent GUI operation: the ’Params/Rescale...’ menu item.

15.68 leaf rewriteIF

m = leaf_rewriteIF(m, ...)
Rewrite the interaction function of m.

Normally the interaction function is rewritten the first time that it
is called after loading a mesh. This is to ensure that it is always
compatible with the current version of GFtbox. Sometimes it is
necessary to prevent this from happening. In this case, if it is later
desired to force a rewrite, this function can be called.

leaf_rewriteIF will do nothing if the i.f. has already been rewritten,
unless the ’force’ option has value true.

47

Note that a rewrite always happens when a morphogen is added, deleted,
or renamed, or when the standard morphogen type (K/BEND or A/B) is
changed.

Equivalent GUI operation: the Rewrite button on the Interction function
panel.

15.69 leaf rotate

m = leaf_rotate(m, type1, rot1, type2, rot2, ...)
Rotate the mesh about the given axes. The rotations are performed in
the order they are given: the order matters. Each type argument is one
of ’M’, ’X’, ’Y’, or ’Z’ (case is ignored). For a type ’M’, the
following rotation should be a 3*3 rotation matrix. For ’X’, ’Y’, or
’Z’ it should be an angle in degrees. Any sequence of rotations can be
given.

See also: leaf_rotatexyz.

15.70 leaf rotatexyz

m = leaf_rotatexyz(m, varargin)
Rotate the coordinates of the leaf: x becomes y, y becomes z, and z
becomes z. If the argument -1 is given, the opposite rotation is
performed.

Equivalent GUI operation: clicking on the "Rotate xyz" button in the
"Mesh editor" panel.

See also: leaf_rotate.

15.71 leaf saddlez

m = leaf_saddlez(m, ...)
Add a saddle-shaped displacement to the nodes of m.
Options:

’amount’ The maximum amount of the displacement, which is
proportional to the distance from the origin. Default
1.

’lobes’ How many complete waves the displacemnt creates on the
edge (an integer, minimum value 2). Default 2.

Example:
m = leaf_saddlez(m, ’amount’, 1, ’lobes’, 2);

Equivalent GUI operation: the "Saddle Z" button on the "Mesh editor"
panel. The amount of saddle deformation is specified by the value in
the upper of the two text boxes to the right of the button. The number
of waves is specified by the lower text box.

15.72 leaf save

m = leaf_save(m, filename, folderpath, ...)
Save the leaf to a file.

48

The way the leaf is saved depends on the extension of the filename:
.MAT The leaf is saved in a MAT file as a Matlab object called

m.
.M Matlab commands to recreate this leaf are saved in a .M

file.
.OBJ Only the nodes and triangles are saved, in OBJ format.
.FIG The current plot of the leaf is saved as a figure file.

All of these formats except FIG can be read back in by leaf_load.
Note that OBJ format discards all information except the geometry of
the mesh.

If the filename is just an extension (including the initial "."), then
a filename will be prompted for, and the specified extension will be
the default. If no filename is given or the filename is empty, then
one will be prompted for, and any of the above extensions will be accepted.

The folder path specifies what folder to save the file in. If not
specified, then the default folder will be chosen, which depends on the
file extension. If a filename is then prompted for, the file dialog
will open at that folder, but the user can navigate to any other.
If the filename is a full path name then the folder name will be
ignored and the file will be stored at the exact location specified by
filename.

Options:
overwrite: If true, and the output file exists already, it will

be overwritten without warning. If false (the default), the
user will be asked whether to overwrite it.

minimal: For OBJ files, if this is true, then only the vertexes
and triangles of the mesh will be written. OBJ files of this
form should be readable by any program that claims to read OBJ
files. If false (the default), all of the information in the
mesh will be written, in an ad-hoc extension of OBJ format.

Equivalent GUI operations: the "Save model..." button (saves as MAT
file) or the "Save script...", "Save OBJ...", or "Save FIG..." menu
commands on the "Mesh" menu.

[m,ok] = leaf_savemodel(m, modelname, projectdir, ...)
Save the model to a model directory.

MODELNAME is the name of the model folder. This must not be a full
path name, just the base name of the folder itself. It will be looked
for in the folder PROJECTDIR, if specified, otherwise in the parent
directory of m, if any, otherwise the current directory.

If MODELNAME is not specified or empty, the user will be prompted for a
name using the standard file dialog.

The model directory will be created if it does not exist.

If the model is being saved into its own model directory:
If it is in the initial state (i.e. no simulation steps have been
performed, and the initialisation function has not been called) then
it is saved into the file MODELNAME.mat.
If it is in a later state, it will be saved to MODELNAME_Snnnn.mat,
where nnnn is the current simulation time as a floating point

49

number with the decimal point replaced by a ’d’.

If the model is being saved into a new directory:
The current state will be saved as an initial state or a later
stage file as above.
If the current state is not the initial state, then the initial
state will be copied across. Furthermore, the initial state of the
new project will be loaded.
The interaction function and notes file will be copied, if they
exist. If the notes file exists, the new notes file will also be
opened in the editor.
Stage files, movies, and snapshots are NOT copied across.

If for any reason the model cannot be saved, OK will be false.

Options:
new: If true, the mesh will be saved as the initial state of a

project, even if it is not the initial state of the current
simulation. The default is false.

strip: If true, as many fields as possible of the mesh will be
deleted before saving. They will be reconstructed as far as
possible when the mesh is loaded. The only information that
is lost is the residual strains and effective growth tensor
from the last iteration. The default is false.

Equivalent GUI operation: the "Save As..." button prompts for a
directory to save a new project to; the "Save" button saves the current
state to its own model directory. The "strip" option can be toggled
with the "Misc/Strip Saved Meshes" menu command.

15.73 leaf semicircle

m = leaf_semicircle(m, ...)
Create a new semicircular mesh.

Arguments:
M is either empty or an existing mesh. If it is empty, then an
entirely new mesh is created, with the default set of morphogens
If M is an existing mesh, then its geometry is replaced by the new
mesh. It retains the same set of morphogens (all set to zero
everywhere on the new mesh), interaction function, and all other
properties not depending on the specific geometry of the mesh.

Options:
’radius’ The radius of the semicircle. Default 1.
’rings’ The number of circular rings of triangles to divide

it into. Default 4.
Example:

m = leaf_semicircle([], ’radius’, 2, ’rings’, 4);
See also: LEAF_CIRCLE, LEAF_CYLINDER, LEAF_LEAF, LEAF_ONECELL,
LEAF_RECTANGLE.

Equivalent GUI operation: selecting "Semicircle" in the pulldown menu
in the "Mesh editor" panel and clicking the "New" button.

50

15.74 leaf set mousemode

m = leaf_set_mousemode(m, varargin)
Set the effect of clicking on the mesh.

Arguments
1: the name of the mode. This is a string, the name of the
required mode.

Options:
Dependent on the mode. Some modes take extra parameters and some
take none.

Whether a click is considered to be on a finite element, a biological
cell, an edge, or a node is determined by the click mode. When an edge
or a node is required to be clicked, a click on a cell will be
interpreted as a click on the nearest edge or node.

The possible arguments and their options are as follows:
’morphadd’: Clicking adds the current amount to the current

morphogen at the clicked vertex.
’morphset’: Clicking sets the current amount of the current

morphogen at the clicked vertex.
’morphfix’: Clicking fixes the amount of the current morphogen at

the clicked vertex to its current value, regardless of the
effects of diffusion or dilution. Clicking to add or set the
morphogen is still effective, as are modifications made by the
interaction function.

’morphshow’: Clicking displays the value of the quantity currently being
plotted. If the value is defined per vertex, the value at the
vertex nearest to the click point will be shown; if per
element, the value for the element clicked will be shown. If
the GUI is running, the value will be displayed there,
otherwise printed to the command window.

’Fix node’: Clicking fixes or unfixes one or more degrees of
freedom of movement of the node, as specified by the optional
argument, which a string containing any of the letters ’xyz’.
If the string is empty, the node becomes unfixed. If the
string is nonempty, the node becomes unfixed if its current
fixed degrees of freedom coincide with the string; otherwise,
the degrees of freedom specified by the string become fixed and
the others unfixed.

’Locate node’: Clicking nominates this node to remain stationary
with respect to the specified degrees of freedom. This differs
from ’Fix node’ in that no more than one node can be specified
for each degree of freedom, and the mesh is rigidly translated
so as to maintain the constraint.

’deletecell’: clicking on a cell deletes it from the mesh.
’seam’: Toggle an edge between being a seam or not.
’split’: Toggle an edge between being designated for splitting or

not.
\subsection{leaf_set_userdata}\label{section-leaf-set-userdata}

\begin{verbatim}
m = leaf_set_userdata(m, ...)

Set fields of the userdata of m. The arguments should be alternately a
field name and a field value.

51

You can store anything you like in the userdata field of the canvas.
The growth toolbox will never use it, but your own callbacks, such as
the morphogen interaction function, may want to make use of it.

See also: LEAF_ADD_USERDATA, LEAF_DELETE_USERDATA.

Equivalent GUI operation: none.

15.75 leaf setbgcolor

m = leaf_setbgcolor(m, color)

Set the background colour of the picture, and of any snapshots or
movies taken. COLOR is a triple of RGB values in the range 0..1.

15.76 leaf setgrowthmode

m = leaf_setgrowthmode(m, mode)

Specify whether growth is described by growth and anisotropy, or by
growth parallel and perpendicular to the polarisation gradient.
Allowable values for MODE are ’ga’ or ’pp’ respectively.

THIS FUNCTION HAS BEEN WITHDRAWN, 2008 May 15.

15.77 leaf setmutant

m = leaf_setmutant(m, ...)
Set the mutant level of a morphogen.

Options:
morphogen: The name or index of a morphogen. If omitted, the

mutation properties are set for every morphogen.
value: The value the morphogen has in the mutant state, as a

proportion of the wild-type state.

Examples:
m = leaf_setmutant(m, ’morphogen’, ’div’, ’value’, 0);

% Set the mutated level of the ’div’ morphogen to zero.

15.78 leaf setproperty

m = leaf_setproperty(m, ...)
Set global properties of the leaf.
The arguments are a series of name/value pairs.

The property names that this applies to are:
’poisson’ Poisson’s ratio. The normal value is 0.35 and

there is little need to change this.
’bulkmodulus’ The bulk modulus. The normal value is 3000 and

there is little need to change this.
’cvtperiter’ The amount of CVT transformation to be carried out

per iteration.
’jiggle’ The amount of jiggling of the biological cells to

52

be carried out per iteration.
’validate’ Whether to validate the mesh after every iteration.

This is for debugging purposes and should normally
be off.

’displayedgrowth’ Specifies which morphogen to plot.

...and many others I have omitted to document.

Example:
m = leaf_setproperty(m, ’poisson’, 0.49);

Equivalent GUI operation: several GUI elements are implemented by this
command:

poisson: Text box in "Mesh editor" panel.
bulkmodulus: No GUI equivalent.
residstrain: "Strain retention" in "Simulation" panel.
cvtperiter: "CVT per iter" in "Simulation" panel.
jiggle: "Jiggle" in "Simulation" panel.
validate: No GUI equivalent.
displayedgrowth: "Displayed m’gen" menu in "Morphogens" panel.
...etc.

15.79 leaf setsecondlayerparams

m = leaf_setsecondlayerparams(m, varargin)

Set various general properties of the second layer. If the second
layer does not exist an empty second layer will be created, and the
properties set here will be the defaults for any subsequently created
nonempty second layer.

If m already has a second layer, this procedure does not affect the
colours of existing cells, only the colours that may be chosen by
subsequent recolouring operations.

Options:
colors: An N*3 array of RGB values. These are the colours

available for colouring cells. The special value ’default’
will use the array [[0.1 0.9 0.1]; [0.9 0.1 0.1]].
N should be 2. "Ordinary" cells will be coloured with the
first colour, while "shocked" cells will be coloured with
the second colour.

colorvariation: A real number between 0 and 1. When a colour for a
cell is selected from the colour table, this amount of
random variation will be applied to the value selected from
colors. A suitable value is 0.1, to give a subtle
variation in colour between neighbouring cells.

15.80 leaf setthicknessparams

m = leaf_setthicknessbyarea(m, value)
Set the thickness of the leaf as a function of its current area:
thickness = K*areaˆ(P/2).
K may have any positive value. P must be between 0 and 1.

53

Options:
’scale’ K. Default is 0.5.
’power’ P. Default is 0.

15.81 leaf setzeroz

m = leaf_setzeroz(m)
Set the Z displacement of every node to zero.

Equivalent GUI operation: the "Zero Z" button on the "Mesh editor"
panel.

15.82 leaf shockA

m = leaf_shockB(m, amount)
AMOUNT is between 0 and 1. Mark that proportion of randomly selected

cells of the A layer with random colours. At least one cell will
always be marked. If there is no A layer, the command is ignored.

Example:
m = leaf_shockA(m, 0.3);

Equivalent GUI operation: "Shock cells" button on the Bio-A panel.
The accompanying slider and text box set the proportion of cells to shock.

15.83 leaf shockB

m = leaf_shockB(m, amount)
AMOUNT is between 0 and 1. Mark that proportion of randomly selected

cells of the B layer with random colours. At least one cell will
always be marked. If there is no B layer, the command is ignored.

Example:
m = leaf_shockB(m, 0.3);

Equivalent GUI operation: "Shock cells" button on the Bio-B panel.
The accompanying slider and text box set the proportion of cells to shock.

15.84 leaf showaxes

m = leaf_showaxes(m, axeson)

Make the axes visible or invisible, according as AXESON is true or false.

15.85 leaf snapdragon

m = leaf_snapdragon(m, ...)
Make an early stage of a snapdragon flower. This consists of a number of
petals, each of which consists of a rectangle surmounted by a semicircle.
The rectangular parts of the petals are connected to form a tube.
The mesh is oriented so that the cell normals point outwards.

Arguments:
M is either empty or an existing mesh. If it is empty, then an
entirely new mesh is created, with the default set of morphogens

54

If M is an existing mesh, then its geometry is replaced by the new
mesh. It retains the same set of morphogens (all set to zero
everywhere on the new mesh), interaction function, and all other
properties not depending on the specific geometry of the mesh.

Options:
’petals’ The number of petals. Default 5.
’radius’ The radius of the tube. Default 1.
’rings’ The number of circular rings of triangles to divide

the semicircular parts into. Default 3.
’height’ The height of the rectangle, as a multiple of the

semicircle’s diameter. Default 0.7.
’base’ The number of divisions along half of the base of

each petal. By default this is equal to rings,
i.e. the same as the number at the top of the tube.

’strips’ The number of strips of triangles to divide the
tubular part into. If 0 (the default), this will
be calculated from the height so as to make the
triangles similar in size to those in the lobes.

Example:
m = leaf_snapdragon([], ’petals’, 5, ’radius’, 2, ’rings’, 4);

See also: LEAF_CIRCLE, LEAF_CYLINDER, LEAF_LEAF, LEAF_ONECELL,
LEAF_RECTANGLE, LEAF_LOBE.

15.86 leaf snapshot

m = leaf_snapshot(m, filename, ...)
Take a snapshot of the current view of the leaf into an image file.
A name for the image file will be automatically generated if none is
given.

Arguments:
1: The name of the file to write. The extension of

the filename specifies the image format. This may be
any format acceptable to the Matlab function IMWRITE.
These include ’png’, ’jpg’, ’tif’, and others.

Options:
’newfile’: if true (the default), the file name given will be

modified so as to guarantee that it will not overwrite any
existing file. If false, the filename will be used as given and
any existing file will be overwritten without warning.

’thumbnail’: if true (the default is false), the other arguments
and options will be ignored (the filename must be given as the
empty string), and a snapshot will be saved to the file
thumbnail.png in the project directory.

All remaining arguments will be passed as options to IMWRITE. Any
arguments taken by IMWRITE may be given. If any such arguments are
provided, the filename must be present (otherwise the first argument
for IMWRITE would be taken to be the filename). If you do not want to
provide a filename, specify it as the empty string. The image will be
saved in the ’snapshots’ folder of the current project folder, if any,
otherwise the current folder. You can override this by specifying an
absolute path.

55

Example:
m = leaf_snapshot(m, ’foo.png’);

Equivalent GUI operation: clicking the "Take snapshot" button. This
saves an image in PNG format into a file with an automatically
generated name. A report is written to the Matlab command window.
The ’thumbnail’ option is equivalent to the "Add Thumbnail" menu
command.

See also:
IMWRITE

15.87 leaf spin

m = leaf_spin(m)
Spin the mesh by 360 degrees about the Z axis, leaving it in exactly the
same orientation as when it started. If a movie is currently being
recorded, the animation will be appended to the movie. The current view
is assumed to have already been written to the movie.

Options:
’frames’: The number of frames to be added. Each frame will

rotate the mesh by 360/frames degrees.

15.88 leaf splitbio

m = leaf_splitbio(m)
Split all biological cells that are currently too large.

Equivalent GUI operation: "Split cells" button.

15.89 leaf splitsecondlayer

m = leaf_splitsecondlayer(m)
Split every cell in the second layer. Reset the splitting threshold
to make the new cell sizes the target sizes.

Equivalent GUI operation: "Split L2" button.

15.90 leaf stitch vertex

m = leaf_stitch_vertex(m, dfs)
Constrain sets of vertexes of the mesh so that they move identically.

Arguments:
dfs: a cell array of vectors of degree of freedom indexes. Dfs in

the same vector will be constrained to change identically.
No index may occur more than once anywhere in dfs.

Equivalent GUI operation: none.

15.91 leaf subdivide

m = leaf_subdivide(m, ...)

56

Subdivide every edge of m where a specified morphogen is above and/or below
thresholds, and the length of the current edge is at least a certain
value.

NB. This function is currently NOT suitable for calling from an
interaction function. It will go wrong.

Note that this command will subdivide every eligible edge every time it
is called. It does not remember which edges it has subdivided before
and refrain from subdividing them again.

Options:
’morphogen’: The name or index of the morphogen
’min’: The value that the morphogen must be at least equal to.
’max’: The value that the morphogen must not exceed.
’mode’: ’all’ [default], ’any’, or ’mid’.
’minabslength’: A real number. No edge shorter than this will be

subdivided.
’minrellength’: A real number. This is a fraction of the current

threshold for automatic splitting of edges. No edge
shorter than this will be subdivided. The current
threshold value is returned by currentEdgeThreshold(m).

’levels’: The levels of morphogen the new vertices will adopt
’all’,’interp’,’none’

An edge will be subdivided if and only if it satisfies all of the
conditions that are specified. Any combination of the arguments can be
given. No arguments gives no subdivision.

’mode’ is only relevant if ’min’ or ’max’ has been specified.
If mode is ’all’, then each edge is split for which both ends satisfy
the min/max conditions.
If mode is ’any’, each edge is split for which either edge
satisfies the conditions.
If mode if ’mid’, each edge is split for which the average of the
morphogen values at its ends satisfies the conditions.

This command ignores the setting, that can be set through the GUI or
leaf_setproperty(), that enables or disables automatic splitting of
long edges.

15.92 leaf unshockA

m = leaf_unshockA(m)
Restore all cells of the Bio-A layer to their unshocked state.
Example:

m = leaf_unshockA(m);

Equivalent GUI operation: "Unshock all cells" button on the Bio-A panel.

15.93 leaf vertex monitor

setaxis(gca,[0,ax(2),ax(3)-0.5,ax(4)+0.5]);

57

15.94 leaf vertex set monitor

case ’MARK’
marker=arg{2};
region=arg{1};

58

