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Figure 1.1: Linear blurring,
top right, simplifies at the ex-
pense of smoothed and indis-
tinct edges. Median filters,
bottom left, have clearer edges
but imprint their shape (here a
disc) onto the image. Whereas,
bottom right, shows that the
sieve ('buZZ' Photoshop plu-
gin, Fo2PiX, Cambridge, UK,
2001) simplifies without chang-
ing the shapes of regions it pre-
serves.
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Algorithms and scale-space

The one dimensional sieve algo-
rithm was devised as an answer
to the challenge of distinguish-
ing noise from the tiny, pico-
amp, currents flowing through
single protein molecules. Fol-
lowing their discovery by Neher
and Sackmann we were measur-
ing them in frog lens cells.

1-2

Scale Space Filters

Classical signal and image filters are linear and, for these, there
are well developed theories. For example, in the 1980's Witkin [86],
Koenderinck [49] and others [76, 52] see also [40] drew attention
to the particular importance of scale-space preserving, diffusion,
filters. The goal is to simplify the image without introducing any
new features (in this context: extrema). The idea is best illustrated
by example.

Imagine projecting a black and white image onto a screen for
an hour. Now turn off the projector and turn on a thermal imager.
White areas will be warmer than dark areas and the image will
be visible. Over time heat diffuses from the warm to cool areas
and as locally hot and cold spots are smoothed out so the image
becomes blurred and, with fewer thermal maxima and minima,
simpler. At no time during the diffusion process are new warm
and cold regions created and this property is known as scale-space
causality preserving.
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Rank filters Note, there is an implicit assumption that impor-
tant features are associated with local maxima and minima (ex-
trema). Gaussian filters uniquely among linear filters have this
property [46]. In the early 1990's the library of causality preserving
filters was extended to include non-linear diffusion filters [64, 59]
that produce attractive results but confound scale and contrast.
Other non-linear filters that were explored included morphological
dilation (max) and erosion (min) filters [48]. Like median filters,
Figure 1.1, they have structuring elements that imprint their shape
on the image. Unlike medians however, they are very sensitive
to noise (a characteristic that is exploited elsewhere to generate
‘painterly’ effects). By contrast non-linear sieves [2, 6](best confer-
ence paper and see Figure 1.1 bottom right) also use rank ordering
properties but are extremely robust to noise and do not have struc-
turing elements.

Median filters are widely discussed in the literature, and used
in industry and image editors. One of the claimed advantages over
linear filters in two dimensions is that they preserve the edges of ob-
jects, Figure 1.1 and in one dimension they preserve the transients
(edges) of pulses (see Figure 1.2).

However, this is only roughly true. Despite the publication
of numerous algorithms for optimally weighting median filters and
generating optimal structuring elements by the non-linear filtering
and mathematical morphology research communities, two prob-

Figure 1.2: Showing that me-
dian filters robustly reject im-
pulsive noise where linear con-
volution filters do not. The
signal, shown as points at the
top, is either filtered using a
window of 3 samples, upper
trace, or 5 samples, lower trace.
Whereas the running mean fil-
ter smoothes the signal, right
column, the median filters do
not. Instead, median filters
completely eliminate short lived
outliers, i.e. medians are ro-
bust. However, neither median
nor mean filters preserve scale
space.

Figure 1.3: Sieves are a se-
ries of increasing scale rank
order filters (¢g, where S
is the filter scale).  Where
mazxgs g is a locally maximum
extremum of scale S, simi-
larly ming g, the filters, ¢,
can be ¢ where at each scale
maxgs g are merged with their
nearest neighbours. o Where
ming g are merged. M Where
first maxs g then ming g are
processed and N where it is
ming, g then maxrsg, or m
where extrema are processed
data order. All preserve scale-
space, robustly reject outliers
and are idempotent. 1-3



Figure 1.4: lllustration of the
1D sieve algorithm. In one pass
the n data values (red dots)
are run-length coded (cyan cir-
cles) and local extrema, identi-
fied by ‘looking’ left and right,
are mapped into a list of lists.
One extrema list for each scale,
1 to n. The filtering process
then starts by merging all ele-
ments in the scale 1 list with
their nearest, in value, neigh-
bouring runs. Each merge typ-
ically requires two pointers to
be changed as two runs are
linked and the new, longer, run
is remapped into the list of lists.
Filtering stops when the desired
scale is reached and the output
is rebuilt.
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lems remain. Firstly, experiments show that the claimed ability of
median filters to preserve the shape of pulses (in one dimension)
is, on average, no better than linear Gaussian filters [18, 73].

Likewise in two dimensions, some edges ‘look’ better after me-
dian filtering than after Gaussian filtering (blurring) but detailed
analysis shows they are located no more accurately than after Gaus-
sian filtering. Worse, in two dimensions the shape of the window
(structuring element) is imprinted on the output of the filter and it
becomes difficult to disentangle underlying properties of the image
from systematic errors that have been added, Figure 1.1. A second
consequence is that such independent filters do not preserve scale-
space causality and this too means that median filtering obscures
underlying, large scale, information in images.

Scale Space sieves solve the problem

Sieves are covered by Segmentis patents US 6,081,617, US
5,912,826, US 5,917,733 together with European equivalents.

Although developed for single channel analysis, the concept of
sieves [2] was first exploited for analysing protein structures [3].
It shown to be the best way to distinguish hydrophobic from hy-
drophyllic regions. The algorithm was criticised because, at the
time, it was not understood ‘why’ the algorithms worked so well.
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Innovation: Sieves in 2D
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A criticism that precipitated more detailed work, in the 1990's, on
the robustness of one-dimensional sieves [4, 6, 7, 5]. In one dimen-
sion there is no difference between an algorithm that operates on a
window and one that operates on level connected sets, however, in
higher dimensions the difference between the two is profound [91],
Figure 1.5 and Figure 1.1 bottom.

The key properties of sieves arise because they use level con-
nected sets. At this time there was also interest in ‘reconstruction
filters’ that also appear to preserve scale space causality (Vincent,
Salembier) that are something of a hybrid between sieves and clas-
sical mathematical morphology.

Initial results Simple experiments on segmentation [45, 43, 41,
42, 44] and pattern recognition [69, 6, 45, 68, 70] provided a better
insight into their practical value and how sieves might be applied
to segmentation [6, 67, 8]. Sieves proved very useful and the
work was, therefore, followed up by establishing the mathematical
properties of 1D sieves [22, 10, 9, 20], multidimensional sieves [14,
12, 11], their relation to weighted median filters [90, 89, 88] and
mathematical morphology [15]. A short formal description of sieves
is given in Chapter 2.

Complexity of sieve algorithms It should be emphasised that
the obvious ways to implement sieves have a high order complexity,

Figure 1.5: Sieves do not use
structuring elements (top). In-
stead, they operate on level
connected sets of pixels, i.e.
they follow edges in the data:
they are shape free. Bottom
right, the sieve is about to re-
move a set of nine pixels that
form a local extremum. Unlike
a filter based on a structuring
element or window (top) the
shape of the selected set fol-
lows the edges. In 1D increas-
ing scale sieves remove increas-
ingly long extrema, in 2D they
remove extrema of increasingly
large area and in 3D, volume.
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Figure 1.6: Order complex-
ity of different versions of the
sieve, O(N'1)

Figure 1.7: Shows a simple im-
age, left, and the correspond-
ing semantic, object, tree. It
is a goal of computer vision to
do this automatically. It is not
possible using Gaussian filters,
wavelets or Fourier transforms.
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> O(n?) (where n is the number of samples or pixels in the image)
and this did not encourage other research laboratories to work with
sieves. Fo2PiX (UEA, Segmentis) did not to draw attention to the
patents that explain how it can be implemented.

A fast algorithm is essential. A 1D implementation is sum-
marised in Figure 1.4. Sieving starts by passing though n data
points once to map the signal into the list of lists and a second
time to pass through each list of the list of lists to both filter, < n
elements, and rebuild the processed signal. Note that as the scale
becomes larger so the number of lists reduces yielding O(n) [13].

This is quite unlike classical morphological or linear filters where
processing time per point usually increases with scale. The 2D case
is similar where runs become patches. It is more complex because
each patch usually has more than two neighbours requiring a search
for the neighbour with the closest value to the current extremum.
However, patches are either small and so have few neighbours, or
are large in which case they are only analysed when the numerous
small regions have been eliminated. The algorithms work out to
be approximately O(N'!) in two or more dimensions [11]. Cur-
rently, there are two implementations of 2D sieves niether have
been optimised to take advantage of modern pipelining

Merging at each scale can be done in various ways. If, at
each scale, the maxima and minima are merged in data sequence,
the result is equivalent to using a recursive median filter at that
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scale, an m sieve. It is left-right assymetrical, i.e. parsing left to
right is likely to yield a different result from right to left. At each
scale an alternative is to merge first the maxima then the minima,
or vic versa. These two alternatives are also different, i.e. they
are up-down asymmetric. In practice, particularly in two or more
dimensions, these four alternatives yield almost identical results
and all four are have a robustness comparable to median filters.
A slew of papers on 2D images then followed. Once again
their robustness was established [32, 33]. More importantly, a new
representation of the sieve transform was developed: a new twist.

Figure 1.8: Top, a sieve decomposition produces granules that are
closely related to the objects. Bottom, shows that a sieve goes a long
way to achieving the decomposition into objects. Thus the sieve looks
a promising starting point for analysing real images.

1-7



Figure 1.9: Left panel shows
a simple image. Middle panel
shows the associated sieve tree.
It is a mapping of the image,
transformed by no loss of in-
formation. Right panel shows
the result of a simple clustering
algorithm to control the build-
ing of the tree during the trans-
form. If a node (granule) is suf-
ficiently similar to its parent the
two are simply merged. The
concentration of information is
greatly increased.
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1D-sieve | 2D-sieve | DTCWT | LBP | Co-occurrance

Mean | 0.718 0.943 0.556 | 0.509 0.692

Table 1.1: Reliability identifying anisotropic textures, 1 is perfect. The
2D-sieve performs the best.

The Sieve decomposition and generating tree structures

Simply filting an image is useful, about 60% of objects that vol-
unteers identified (about 200 people each marking up 50 images)
included large scale extrema and so removing detail by removing
small scale extrema is likely to concentrate information. But it
is crude. What is really needed is a hierarchy of objects such as
that shown in Figure 1.7. Albeit a stylised image it makes a point
because, unlike the Fourier transform or wavelet decomposition,
the sieve will actually generate such a hierarchy, Figure 1.8 in one
pass. This forms a conceptual framework for understanding how
sieves might be used.

In reality, it is more difficult. A sieve decomposition of real im-
ages produces trees with far too many nodes [16, 17, 37]. It is only
recently that methods for simplifying the tree and, as important,
efficient code for implementing such simplifications, have become
available. Figure 1.9 shows output from the implementation with

an order complexity shown in Figure 1.6. It is promising.
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Applications of sieves

Applied to dynamic shape recognition Recently there have
been thorough studies into the relative merits of sieves over the best
competitor algorithms. For example, the 1D sieve can generate
features for lip reading (hidden Markov models implemented in
HTK) and the results remain the best so far, first outlined in [31]
and culminating in [57].

Applied to texture recognition The identification of textures is
a longstanding computer vision problem. Particularly, anisotropic
textures such as cloth where what it looks like depends on the
viewing angle. Table 1.1 shows result suggesting that the 2D-sieve
is the best. Texture is characterised by sieving each texture image
to scales, [s;...sy] where log,, s, are equispaced between 0 and
log1g Smazy Smax 1S the maximum chosen scale and N the number
of sieved images.

Tex-Mex features are formed from statistics derived from chan-
nel images. Noting that the setting S, = 30 removes all the
texture from the images and setting N = 5 results in five images
sieved to scales [1,2,5,13,30]. Five channel images are formed
from these sieved images at scales 0 to 1, 1 to 2, 2to 5, 5 to 13
and 13 to 30. Figure 1.10 shows some example sieved images and
resulting channel images. The intensity of the granule, or channel,
images as a function of scale is an indicator of the scale-distribution
of the texture features.

Applied to feature point detection Early explorations into us-
ing sieves to help match stereo pairs of images [34, 61, 60, 62, 16,
21] have been overtaken by a method that uses ‘Maximal Stable
Extremal Regions’, MSER [56]. However, recent work shows that

Figure 1.10: A textured im-
age sieved to five scales using
a M-sieve. Resulting Chan-
nel images are Bi-polar. Red
is used to denote +ve granules
and blue -ve granules.

Figure 1.11: Bottom: an im-
age with its associated stable
salient contours. These con-
tours can be assembled into a
saliency tree (top) which is an
edited version of the full sieve
tree.

1-9



Figure 1.12: Highlights and
lowlights (extrema) are impor-
tant in pictures. So too are
edges, but not too many and
not too slavishly accurate.
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the MSER appears to be a special case of the sieve (an open-
ing sieve). Actually, alternating sequential and recursive sieves are
found to be still more robust [R. Harvey and Y. Lan, in prepara-
tion]. Harvey also made a systematic comparison of algorithms
[c.f. K. Mikolajczyk, C. Schmid, A performance evaluation of local
descriptors Technical Report Oxford, to appear PAMI] that show
that sieve algorithm outperforms competitor methods for finding
salient regions.

Image retrieval Current interest is in finding regions in the im-
age that are likely to remain unaffected by noise, projective trans-
formations, compression and lighting change. In a comprehensive
set of trials [58] a type of region known as Maximally Stable Ex-
tremal Regions (MSERs) were found to be the best performing.
It turns out that MSERs are generated by a variant of the sieve
algorithm known as open/close-sieves. It is therefore possible to
parse a sieve tree and to generate Stable Salient Contours (SSCs)
which are carefully selected nodes from the sieve tree that have
all the stability and robustness properties associated with MSERs.
Thus, as in Figure 1.11 the sieve tree generates stable regions “for
free”.

Related Recently, the sieve algorithm has started to appear in
the technical literature under different names apparently reinvented
independently. In addition to the MSER (above) a Dutch team
reported an algorithm that partially achieves the sieve [84]. A
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French team describes the algorithm, they refer to finding image
components [63].

Applied to finding components for artistic pictures It ap-
pears, therefore, that sieves form a promising starting point for a
number of computer vision solutions. For most of these, however,
the sieve is just one component of a number of algorithms that are
required for the overall functionality.

However, there is one application area where the algorithm
makes a particularly large contribution: forming artistic pictures.
It is reported in [19] that a sieve based scale-space decomposition
replicates a basic aspect of painting. Namely, it identifies light and
dark regions of a photograph and does so at multiple scales. It
parallels the way artists represent light and dark at multiple scales,
Figure 1.12.

The sieve finds extrema of light and dark, preserves the edges
of such areas and does so at multiple scales. Experience in the
laboratory and commercial market shows that it contributes greatly
to producing good digital art. It is this application of sieves that
is pursued in Fo2PiX.

Initially, the algorithm was released as a simple Photoshop plu-
gin. However, it quickly became clear that the properties of the
sieve lead people to use it not as an ‘effect’ but as a tool.

For the first time it was possible to extract artistic components
from the original photograph that could be used to create pictures.
Photoshop actions were constructed to make the process easier but
it became clear that a better environment for creating pictures, one
that used ‘steps’, would be extremely helpful, see Page ?7.

Colour sieves Usually the sieve works on the luminance colour
channel (grayscale). There is a conceptual problem extending it
to colours since it depends on find an order (maxima and minima)
and one can only order in one dimension, i.e. one colour channel.
However, there is a pragmatic work around. The sieve has recently
been extended into the color domain [28, 29] via the use convex
hulls to define color extrema which are then merged to their nearest
neighbours, found using a Euclidean distance measure. Figure 1.13
shows an example color sieve decomposition of a sample image.

Arguably, it is the best ‘posterising’ (colour segmentation) re-
sult yet seen. However, at present the algorithm itself is too slow
to be practical. It needs more engineering.

See full technical details on
Page 2-2.

The wide variety of applications
in which the sieve appears to
excel suggests that the algo-
rithm will find wide commercial
use as the fast sieve algorithm
becomes better known.

1-11
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Figure 1.13: Sample image and RGB space color sieve decomposition
to labelled scales.
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This chapter is extracted from the paper underpinning a
prizewinning ‘best poster’ [19].

Abstract

Artists pictures rarely have photo-realistic detail. Tools to cre-
ate pictures from digital photographs might, therefore, include
methods for removing detail. These tools such as Gaussian and
anisotropic diffusion filters and connected-set morphological fil-
ters (sieves) remove detail whilst maintaining scale-space causal-
ity, in other words new detail is not created using these operators.
Non-photorealistic rendering is, therefore, a potential application
of these vision techniques. It is shown that certain scale-space fil-
ters preserve the appropriate edges of retained segments of interest.
The resulting images have fewer extrema and are perceptually sim-
pler than the original. A second artistic goal is to accentuate the
centre of attention by reducing detail away from the centre. The
process also removes the detail providing perceptual cues about
photographic texture. This allows the ‘eye’ to readily accept al-
ternative, artistic, textures introduced to further create an artistic
impression. Moreover, the edges bounding segments accurately
represent shapes in the original image and so provide a starting
point for sketches.
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Introduction

A photographer tends to choose uncluttered backgrounds and
make careful use of focus to direct attention. Of course, lens
blurring is both easy and effective for it exploits the natural and
powerful way in which the brain rejects non-foveated regions of a
scene (they are simply out-of-focus). The technique finds its way
into rendering, digital art, advertising, and video through the Gaus-
sian blur filter widely used to de-focus background material. But
the method is rarely used by painters. Rather, they direct attention
by selecting detail and manipulating textures and geometry.

By contrast, a painter starts with a blank canvas, adds paint
and the more skilled knows when to stop. It is the progressive addi-
tion of detail that characterizes the process of producing represen-
tational art in which only some detail directly represents that in the
original scene. It difficult to capture representational detail manu-
ally from three-dimensional (3D) scenes onto two-dimensional (2D)
canvases, but this does not satisfactorily explain why trained artists
limit the amount of detail they use. After all two dimensional, pho-
tographic quality, images have been traced for over five centuries
by those projecting images onto surfaces using concave mirrors and
lens [38]). But the evidence from the resulting pictures suggests
that artists pick only those details that resonate with their artistic

Figure 2.1:  Hockney [38]
draws attention to how, in this
Ingres drawing (A), “the cuff of
the left sleeve is not followed
‘round the form’ as you would
expect, but carries on into the
folds”. (B) Red overlay indi-
cates the relevant lines. (C)
Photograph of a similar sub-
Ject. A Sobel edge filter (D)
does not reveal the artistic line.
(E) Shows in red the line line
from (D) that follows the cuff
rather than the light. There
is too much detail. Blurring
does reveal the large scale cuff-
to-sleeve highlight however it
yields edges (D) that are incom-
plete.

2-3
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interpretation. They choose to ignore some objects and lots of
detail. Painting is not photography.

The importance of controlling detail

Selectively removing detail simplifies a photograph and is im-
plicit in existing methods for producing painterly pictures. Systems
for creating pen-and-ink drawings from existing images clearly re-
move both color, L., and spatial detail, L, (these two related ideas
are lumped together in L, = A(L., L)) and simultaneously add
technige and artistic detail in the form of pen strokes [74]. In the
case of painting Haeberli samples the image and then modulates
and spreads the color over a region using a brush, an action that
also adds technique detail by simulating the medium and stochastic
brush strokes that simulate the artistic interpretation [30]. By mod-
elling the flow of water dragging pigments over paper Curtis [25]
removes detail from the original photograph and simultaneously
substitutes texture detail (L;) replicating a watercolor painting.
Hertzmann starts by removing detail with large brushes and then
uses finer brushes to selectively refine the picture where the sketch
differs from blurred photograph [35]. These methods sub-sample
the source image either before or after smoothing: the standard
way to remove detail and prevent aliasing. In this paper, however,
we concentrate on another way to control the level of detail in a
digital image. We do not address the separate problems of adding
technique and artistic detail.

Of course, form is extremely important and should be exploited
in representational art where available, as to an artist working from
life or to a digital artist working with a three dimensional graphics
system [36]. This, however, is not enough and, anyway, is less
easy to come by when starting with a photograph alone. Here,
the play between light extrema, light and shade is key. The no-
tion receives some quantitative support from observations on the
process of painting, Figure ??. The artist started with gray paper
and subsequent analysis of the fifty images taken at two minute
intervals during painting shows that the mean intensity of 80% of
paint marks, added by the artist, are more extreme than the mean
of their immediate surroundings. In other words, the artist built
the portrait by adding ever lighter and darker strokes (indeed it is
difficult to see how else it could be done!). Moreover, a quanti-
tative association between light and dark extrema and objects has
been reported: when asked to outline objects within photographs,
60% of regions that people demarcated manually were associated
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with light or dark extrema [32]. These observations support the
contention that control of scale and extrema are important in the
creation of pictures from photographs.

The new algorithm decomposes an image by ordering level-
connected sets in two ways: first by scale (detail) and secondly by
value (extrema of light and shade). It provides the digital artist
with access to a choice of differently scaled detail. Unlike blur-
ring, the system simplifies without distorting edges and it can, in
principle, be used ‘underneath’ other painterly algorithms both to
simplify the image prior to sampling and to provide, perhaps better,
lines for clipping [53].

Selectively removing detail simplifies a photograph and is im-
plicit in existing methods for producing painterly pictures. Systems
for creating pen-and-ink drawings from existing images clearly re-
move both color and spatial detail and simultaneously add artis-
tic detail in the form of pen strokes [74]. In the case of paint-
ing Haeberli samples the image, effecting a simplification. He
then modulates and spreads the color over a larger region using
a brush, an action that also adds technique detail by simulating
the medium and stochastic brush strokes that are modulated by
edge gradients to imply artistic interpretation [30]. By modelling
the flow of water dragging pigments over paper Curtis [25] re-
moves detail from the original photograph by a form of blur and
simultaneously substitutes texture detail that replicates watercolor.
Hertzmann starts by removing detail with large brushes and then
uses finer brushes to selectively refine the picture where the sketch
differs from blurred photograph, a form of multiscale removal of
detail [35]. These methods sub-sample the source image either
before or after smoothing: the standard way to remove detail and
prevent aliasing. In this paper, however, we concentrate on another
way to control the level of detail in a digital image. Scale-space fil-
tering to both remove detail and uncover large scale image maxima
(highlight) and minima (lowlights).

Chiarascuro (bright highlights and dark shadows) and its ma-
nipulation characterizes the work of many artist'’s, since the renais-
sance. Hockney [38] draws attention to the way the line used by
Ingres follows the light rather than the form (as evidence of optical
assistance of which he gives many other examples). Figure 2.1(A)
shows an extract from the original drawing of Madame Godinot
1829. (B) Shows the artist’s lines that, Hockney argues, follows
the light. We illustrate the problem by analysing the photograph
shown in (C).




Figure 2.2: (A) Photograph
and (B) associated edges. (C)
Sieved to remove detail and
(D) fewer edges make a more
sketch-like picture.

2 Algorithms for Art

Conventional edge detectors (D and E) produce a prominent
line along the back edge of the cuff (F): a boundary that was
ignored by the artist. The problem lies with the local edge filter.
Typically they have a small region-of-support that responds to the
strong edges around the form and so cannot ‘see’ the larger picture
(the Canny filter (D) is more complex but has related problems).
Simplifying the image by blurring, Figure 2.1(G), increases the
region-of-support and does both reveal the expected large scale
highlight running from the cuff into the sleeve but it removes detail.

Thus Gaussian scale-space filters meet two requirements of a
pre-processor for non-photorealistic rendering. As such it is used
to segment images and create pictures where the artist's eye-gaze
governs the level of detail rendered at different positions in the
image [26]. Whilst pleasing, the results are limited in the range of
styles they can support because such filters introduce significant
geometric distortion reflected in the edges (H) that, whilst graph-
ically interesting, do not form the basis of a sketch: important to
the artist. Here we pursue alternative scale-space filters.

Simplification maintaining scale-space causality

In image processing the process of removing detail from a dig-
ital image emerged from studies on finding salient, edges [55].
The work with Gaussian filters lead to the, theoretically tidy, rep-
resentation of images known as scale-space [40, 87, 50]. This
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important concept is seen as a requirement of image simplification
systems since it guarantees that extrema in the simplified image
are not artifacts of the simplification process itself. Computation
systems that preserve scale-space causality are usually associated
with Gaussian filters [1] and diffusion [65] in which the image forms
the initial conditions for a discretization of the continuous diffu-
sion equation: V - (¢V f) = f,. If the diffusivity is a constant this
becomes the linear diffusion equation, V2f = f, which may be
implemented by convolving the image with the Green's function of
diffusion equation: a Gaussian convolution filter. Of course, care
is needed when this equation is discretized [51] but, if it is done
correctly, a scale-space with discrete space and continuous scale
may be formed?.

Approximations to this Gaussian blur filter are common in
image-editors and graphical rendering systems. The problem with
blurring, when finding salient edges at large scales, is that edges
wander away from the true edge and objects become rounded: a
consequence of convolution, Figure 2.1H. It is better if diffusivity
depends upon contrast, as in anisotropic diffusion, but computa-
tion then becomes lengthy and unwanted small scale detail with
a high enough contrast may nevertheless be preserved. In other
words, as with linear diffusion, there is an interaction between the
intensity and scale of an object.

More recently the multiscale analysis of images has been ex-
plored in the field of mathematical morphology. Two rather differ-
ent approaches to constructing a morphological scale-space have
been suggested. In the first [79, 48] the image is either eroded
or dilated using an elliptic paraboloid. As is often the case in
morphology (and convolution filters) the shape of the structuring
element (window) dominates over structure in the image. That
said however, the brush like ‘texture’ introduced by the structur-
ing element can be useful in digital art and is used in photo-editor
plug-ins (Adobe Photoshop Gallery Effects).

The second approach uses those connected-set alternating se-
quential filters sometimes termed sieves [11]. Sieves [15] appear in
a variety of guises but they have their starting point in connected-
set graph morphology [72, 81, 82] and watersheds [75]. At small
scale they filter out maximally stable extremal points [47] or detail
and at larger scale, entire objects. Figure 2.2(C) confirms that fine
detail is removed and that edges (D) of remaining features are well
preserved. These edges are more sketch-like than those derived

1Or with a discrete scale parameter if preferred.
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directly from the image (B) or from a Gaussian smoothed image
Figure 2.1(H). This, and the more poster-like simplified image pro-
vides a reason to explore further how these scale-space filters can
be used in non-photorealistic rendering.

Methods

We implement the sieve described in [11]. The algorithm first
creates a list of all maxima and minima. These extrema are level
8- (or 4-) connected-sets of pixels that are then sorted by area. A
scale decomposition progresses by merging all extrema of area 1
to the next most extreme neighbouring pixel(s), i.e. all extreme
values are replaced by the value of the next most extreme adjacent
pixel. If the segment remains an extremum it is added to the
appropriate scale extremum list. The decomposition continues by
merging all extrema of scale 2, 3 and so on. Thus, for example,
by scale 100 there are no maxima (white) or minima (black) areas
of less than 100 pixels. We use low-pass, band-pass and high-pass
filters created by combinations of sieving operations.

The image is represented as a graph [80] G = (V, E). The set
of edges E describes the adjacency of the pixels (which are the
vertices V). A pixel, x, is connected to its eight neighbours. A
region, C,.(G, x), is defined over the graph that encloses the pixel
(vertex) z, C.(G,x) = {£ € C.(G)|zr € &} where C,.(G) is the
set of connected subsets of G with r elements. Thus C,.(G,z) is
the set of connected subsets of r elements that contain x. For
each integer r > 1 the operators v, ~,, M", N" : yARESy A4
are defined as ¢, f(r) = maxXece, (o) Minuee f(u), Y f(x) =
minfGCr(G,x) maXyee f(u)v M = /VT@ZJW N = @Z)r%"- M"is a
connected-set grayscale opening followed by a closing defined over
a region of size 7.

The types of sieve known as M- or N-sieve are formed by
repeated operation of the M or N operators that are also known
as connected alternating sequential filters. An M-sieve of f is the
sequence (f(")2, given by

f(l) _ le, f(T+1) — "/\/l’f"i‘lf(r)7 r 2 1 (2]_)

The N-sieve is defined similarly. It has been shown how connected
set openings can be performed in approximately linear time [85]
using a modification to Tarjan's disjoint set algorithm and a sim-
ilar implementation is used here for the alternating sequence of
openings and closings that forms the sieve.

) is a low-pass filter removing all extrema up to scale r.
fO — £ is a high-pass filter keeping all extrema from scale 1
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to 7 and £ — f(") is a band-pass filter for extrema (granules) of
scales between s and r.

The sieve requires two orderings. Level connected-sets are or-
dered by value and extrema are removed in order of scale. Where
a pixel represents a triple, red, blue and green (RGB), there is no
clear way of jointly ordering by value. This is addressed in two
ways. We note that all three channels have a high correlation with
brightness (unlike hue, saturation, value) and so the three colour
planes are sieved independently, the RGB-sieve. The effect of re-
moving detail can be seen by comparing Figure 2.2(A) and (C).
It is evident that (B) has less detail yet, in contrast to alternative
scale-spaces, the edges of large scale objects are preserved. This
is, perhaps, more obvious in the edge images compare Figure 2.2B
and D. The resulting image is both grayer than the original (ex-
trema are removed) and the colours change slightly because they
arise from the signals obtained from colour channels sieved inde-
pendently. There is no link between a pixel and its colour.

A new alternative is the convex ‘colour sieve’ which follows
from a geometric interpretation of the colours of a region and its
neighbours. A convex hull is fitted to points in the region projected
into colour space. All points that lie on the convex hull itself are
extreme (ref. to anonymous paper here) and those enclosed are
not extreme. This provides an ordering - the distance from the
convex hull. This definition is tidy because many typical colour
transformations such as gamma correction and linear transforma-
tions affect the geometry but not the topology of the convex hull
and the extrema inherit the invariance properties.

To simplify the image we merge smaller regions into larger ones
without introducing additional extrema by merging to the neigh-
bour with the closest Euclidean distance. Neighbouring regions
with identical colour distances are further ordered by computing
the difference of their luminance L = (r + g + b)/3 and further
tiebreaks are achieved by ordering by their G,R and B values. The
merging is repeated iteratively until idempotence.
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E F

Figure 2.3: ‘(A) Band-pass highlights displayed against a black backround. (B) Band-pass lowlights
displayed against a white backround. (C) Band-pass HSV saturation channel used to select colours,
such as the red roofs, that stand out from backround. (D) Highlights and lowlights incorporated into a
picture. (E) Replacing the chroma of (D) with colours from (C) adds colour highlights (visible in colour
prints, pdf only) that are not visible in the luminance image (F).

2-10

Results

We consider how high- and low- lights extracted from the image
using a high-pass sieve can be incorporated into non-photorealistic
image renderings. The grayscale image is band-pass sieved, ¢ =
f(s) — f(T), to find the associated scale highlights, where ¢ > 0,
y = q, elsey = 0. Figure 2.3A shows the result. Likewise, lowlights
where ¢ < 0, y = 1+ q, else y = 1, Figure 2.3B. Combined by
painting them onto a mid-tone background, Figure 2.3D, the effect
is similar to chalk and charcoal. Colour highlights are located at
a particular range of scales by sieving the HSV saturation channel
and using this to control the chroma, quue = ff(bf}e — ff(bz)e where
Qhue > t, hue = Qgqi, Sat = Qsqp, val = 1, else hue = 1, sat = 1,
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val = 1, where t is a threshold that can be adjusted by the user?.
The colour highlights have been painted by replacing the NTSC
chroma values on the canvas with those from the colour highlights,
Figure 2.3E3

Interestingly, as Livingstone [54] points out, by colouring the
canvas with the complement (the two colours sum to gray) of, for
example, the red roofs an optical illusion is created. The effect is
to make the colour appear more interesting that it otherwise might
be for two reasons. Firstly, it challenges the viewer's vision system
(and monochrome display devices) because the NTSC grayscale
(perceptual luminance) does not change even when the chromi-
nance does: all trace of the colour change vanishes in an NTSC
grayscale print, Figure 2.3F. Exactly how Figure 2.3E appears on
the printed page depends on the printer software. For readers able
to see colour this in colour, Figure 2.3E plays to another colour
illusion. The sharp boundary between the complementary colours
enhances perceived brightness [54].

The brushwork in Figure 2.3A-F places the centre of attention
in the centre of the picture by leaving the periphery free of detail.
This is typical of many paintings. We, therefore, devise an algo-
rithm that automatically selects a central region to be rendered
in more detail than a middleground which, in turn is set against
a backround with low detail. In other words, an algorithm that
creates foreground, My, and middleground, M,, masks.

The process is outlined in Figure 2.4B. The idea is to create
masks that exactly follow the boundaries of objects in the image
and which place My in the centre and M,, around it. Each mask
is created separately. The image is sieved to a scale, s, quantised
by an amount ¢ and the flat zones labelled. Those zones that
intersect the innermost darker-cross and the pale-cross are then
marked as shown by the white segments, Figure 2.4B. It white
segment has an area A. The part of the pale-cross not covered
by the marked zones has an area A. We then search for a scale,
s, and quantisation ¢ that minimises difference between the areas,
A—A. An exhaustive search of only a few s and ¢ suffices. Typical
masks for My and M,,, are shown in Figure 2.4B bottom panel and
they have been used to combine images created by RGB-sieving
to three scales, Figure 2.4C. The result is more detail towards the
centre of the image helps draw the viewers attention. The changes

2For digital artists the convention, that user-adjustable thresholds should
be avoided, is not relevant.
3PDF version of the paper.
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Figure 2.4: Photograph. (B) Top, the central cross designating the
region of primary interest together with its border. Bottom, white seg-
ment indicates the region automatically selected to be foreground res-
olution, gray segment at middleground resolution, black at background
resolution. (C) The union of foreground, middleground and background
resolution image segments. Controlling the level of detail helps direct
attention to the interest points in the centre.
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B

Figure 2.5: ‘(A) Figure 2.4 textured using a photograph of a water-
colour wash and pencil cross-hatching (B).

of scale are subtle since they follow the boundaries of objects in
the image rather than some externally imposed mask.

Notice that many of the areas in Figure 2.4C are flat because
texture, fine detail, has been removed by the sieve. This creates
an opportunity to replace the original texture with another as an
artist might do by using paint or pencil. The image was mixed with
a photograph of a simple watercolour wash (not shown) (multipli-
cation rather than addition), Figure 2.5A, produces a distinctly
watercolour like result. Mixing the same texture with the original
is much less effective (easily achieved in Photoshop) because the
underlying original detail leaves old texture cues intact. A more
extreme example is shown in Figure 2.5B. Here, a photograph of
an area of pencil cross-hatching is mixed with Figure 2.4C. Unlike
Figure 2.5A however, each labelled level set in Figure 2.4C is filled
with a segment of the cross-hatched picked from a random posi-
tion in the texture image. In other words each of the objects is
hatched separately. This is most clearly seen in the large flat areas
top left and bottom right. Superimposing the edges completes the
effect.

Conclusion

The sieve, particulary the convex-hull colour, algorithm is a
useful starting point for non-photorealist rendering of photographs.
It provides the digital artist with access to a choice of images
with differently scaled detail. Unlike blurring, the system simplifies
without distorting edges thus the edges provide a useful starting

2-13
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point for creating sketches. The large scale level sets it creates
provide a mechanism for segmenting the image into regions that,
by having different amounts of detail, create a centre of attention.
It is data-driven rather than dependent on a pre-defined geometry.
Band-pass sieves also allow artistically important high-, low- and
bright coloured highlights to be found. Thus in Figure 2.6A the
sieve removes small scale detail and the highlights are now treated
in a way that is redolent of Figure 2.1A with edges that follow the
light Figure 2.6B. We do not attempt to map photographs directly
into art: the artist is still essential. Rather the aim is to provide
the digital artist with tools. Further automatation might include
object recognition to create ways of improving composition and
tools to balance colour composition.

//—

A

Figure 2.6: (A) Sobel edges after sieving RGB Figure 2.1C to scale
2000: the line carries into the folds. (B) Red line indicates the line.
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3 So what about shape and appearance

Figure 3.1: Distortions of shape and appearance using active appearance models to make the por-
trait more like a: teenager, young adult (equivalent to the original), older adult, more feminine, more
masculine, Modigliani, Botticelli, Mucha. (Try David Perret’s website demonstration http://www.dcs.st-
and.ac.uk/%7Emorph/Transformer/ )

Applying Research into Soft Models

Introducing statistical models of images. The ideas ap-
plied to the attractiveness of flowers (it is the perception by
bees that counts) can be explored using the Matlab toolbox
has just been released in association with a paper in Sci-
ence [83](http://www.cmp.uea.ac.uk/Research/cbg/Documents/
Bangham-Coen-Group/AAM Toolbox/AAMToolbox.htm).

Shape models Two dimensional sieves used for art produce a
‘shape free' decompositions of images. This is its great power,
the decomposition is affine independent. However, shape is im-
portant. The most direct way to analyse and work with shapes is
use statistical shape models. These were introduced in botany for
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analysing plant parts [39, 71] and recently refined for understand-
ing the evolution of flower colour [83]. Separately, it was developed
for analysing medical images [24, 23, 24], speechreading [57], talk-
ing heads [78, 77], and tracking people (Matthews). Perret used
them to study the psychophysical basis of beauty [66].

Figure 3.1 shows a statistical model developed by Perret dis-
torting a portrait of Emma. Technically, a statistical analysis of
shape and shape-free appearance is used to create a model. The Figure 3.2: Using the model to
images are then generated by the model from different positions in  rotate a photograph.
the shape-appearance space.

Figure 3.2 shows the output from a similar statistical model.

This time created by analysing a set of photographs. To reshape
the original the model was fitted to the original then the result
synthesised by shifting closer to the mean shape, keeping the ap-
pearance the same.

Applications to photography and digital art It would be de-
sirable to apply the technique to photography and creating artistic
pictures. One can imagine ‘retouching’ photographs by slightly en-
larging the eyes, increasing the smile or changing the pose and one
can imagine producing pictures with the ‘flavour’ of old masters (it
will not work well, if only because an inkjet print of an oil painting
is lamentable). The problem is size. There is a practical constraint
on the size of image that can be modelled using the current meth-
ods. There are, however, at least two ways in which this limitation

can be overcome and these form the subject of current research at
UEA.

How the models are created in Matlab Our tool-
box for generating statistical shape and appearance mod-
els is available together with sample botanical data
(http://www.cmp.uea.ac.uk/Research /cbg/Documents/Bangham- Figure 3.3: Shape model defi-
Coen-Group/AAMToolbox/AAMToolbox.htm). A set of portraits nition.
were centred in a 400x400 pixels image. A point model was
created by dotting 199 points around the face, hair, shoulders and
hat, (Figure 3.3). Primary points (black ) were at easily recog-
nisable features, the corners of the mouth, nose, etc. Secondary
points (circles) were equally spaced between the primary points
(the pmplace routine helps by automatically sliding the points
long a cubic spline fitted to the points).

The positions of n points for each leaf ([X;,Y;],7 = 1,,n)

ERE
were manually selected using "pmplace” function of the 'Shape
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model toolbox’ that automates the rest of following process. The
points for each portrait are saved in separate files each containing
2n data values. The mean shape is calculated from M portraits,
[X;,Y;] where j = 1,--- , N, and the mean X; = 3=V X, ;/N
and likewise for Y (ignoring the distinction between primary and
secondary points). Differences between shapes associated with
differing species are reflected in the way portraits shapes differ
from the mean. This is captured by subtracting the mean from
each point D, ; = X; ; — Xj,Dmﬂ =Y — YJ , notice that the
X and Y differences are concatenated into a single data vector
forming a column of 2N values. D is a 2n column by M row data
matrix where each row represents a leaf and each column a set of
measurements.

The measurements are correlated, i.e. if one compares a wide
portrait with a narrow one, adjacent points tend to differ in similar
ways. In other words, the measurements do not provide a compact
description of shape. To find a compact linear description of shape
we can construct the smallest set of linearly independent vectors
that span the space of interest. To find independent (orthogo-
nal) measures of shape, the differences for each image, D;, are
represented as a linear combination of orthogonal principal com-
ponents D; = b;opo + b;1P1 + bi2P2,+ -+, bi2n—1P2,—1 Where
pi is the first principal component and b;; is a weight. Thus each
portrait shape, 7, has a vector of weights b;. To the extent that
D can be represented linearly in this way (there may be underlying
non-linearities) the weights, b, ;, associated with portraits ¢ are j
independent measures of shape that can substitute for D, ;.

Principal component analysis Principal component analysis
(PCA) is used to find P where P = [pop; - - - pan_1] , such that
b, = P’D; where the superscript tick, (.)’, denotes the transpose
(a capital T is an alternative). The components are ordered to
account for decreasing variance and it is found that a good rep-
resentation of the shape of the portrait, i, can be made using
the weights of just the first three components [b; 0b; 1b;2]. These
account for most of the variance of shape about the mean shape.
The estimated shape, lA)z corresponding to just these components,
Z;i = [b’i,Oabi,labi,Qa s 7bi,2n—1]v can be found from Dz = sz )
Figure 3. P is called the Point Distribution Model (PDM) and
it is obtained from D in Matlab by finding the covariance matrix,
C = cov(D), the eigenvectors (E), where [E, V| = ¢eig(C), and by
sorting E by decreasing importance according to the eigenvalues,
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V (the covariance of E). Thus, [vals, ||=sort(diag(V), 'descend’)
and the PDM is the sorted eigenvalues, P = E(:,I). To find b
from D in Matlab use b(7,:) = P’ b(i,:).
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